
Principles for automated and reproducible
benchmarking
Conference or Workshop Item

Published Version

Creative Commons: Attribution-Noncommercial 4.0

Open Access

Koskela, Tuomas ORCID logoORCID: https://orcid.org/0000-
0002-5813-6539, Christidi, Ilektra ORCID logoORCID:
https://orcid.org/0000-0002-5045-7987, Giordano, Mosè
ORCID logoORCID: https://orcid.org/0000-0002-7218-2873,
Dubrovska, Emily ORCID logoORCID: https://orcid.org/0009-
0003-8066-5458, Quinn, Jamie ORCID logoORCID:
https://orcid.org/0000-0002-0268-7032, Maynard, Christopher
ORCID logoORCID: https://orcid.org/0000-0002-6253-9154,
Case, Dave ORCID logoORCID: https://orcid.org/0009-0001-
3735-5687, Olgu, Kaan ORCID logoORCID:
https://orcid.org/0000-0003-0351-2055 and Deakin, Tom
ORCID logoORCID: https://orcid.org/0000-0002-6439-4171
(2023) Principles for automated and reproducible
benchmarking. In: SC-W 2023: Workshops of The International
Conference on High Performance Computing, Network,
Storage, and Analysis, 12-17 Nov 2023, Denver, Colorado, pp.
609-618. doi: https://doi.org/10.1145/3624062.3624133 (ISBN:
9798400707858) Available at
https://centaur.reading.ac.uk/114121/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf

To link to this article DOI: http://dx.doi.org/10.1145/3624062.3624133

Publisher: ACM

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading
Reading’s research outputs online

http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Principles for Automated and Reproducible Benchmarking
Tuomas Koskela
Ilektra Christidi
Mosè Giordano
Emily Dubrovska

University College, London
Advanced Research Computing

London, UK

Jamie Quinn
University College, London

Advanced Research Computing
London, UK

Christopher Maynard
Met Office
Exeter, UK

University of Reading
Department of Computer Science

Reading, UK

Dave Case
National Centre for Atmospheric

Science
University of Reading

Department of Meteorology
Reading, UK

Kaan Olgu
University of Bristol

School of Computer Science
Bristol, UK

Tom Deakin
tom.deakin@bristol.ac.uk

University of Bristol
School of Computer Science

Bristol, UK

ABSTRACT
The diversity in processor technology used by High Performance
Computing (HPC) facilities is growing, and so applications must
be written in such a way that they can attain high levels of perfor-
mance across a range of different CPUs, GPUs, and other accelera-
tors. Measuring application performance across this wide range of
platforms becomes crucial, but there are significant challenges to
do this rigorously, in a time efficient way, whilst assuring results are
scientifically meaningful, reproducible, and actionable. This paper
presents a methodology for measuring and analysing the perfor-
mance portability of a parallel application and shares a software
framework which combines and extends adopted technologies to
provide a usable benchmarking tool. We demonstrate the flexibility
and effectiveness of the methodology and benchmarking frame-
work by showcasing a variety of benchmarking case studies which
utilise a stable of supercomputing resources at a national scale.

ACM Reference Format:
Tuomas Koskela, Ilektra Christidi, Mosè Giordano, Emily Dubrovska, Jamie
Quinn, Christopher Maynard, Dave Case, Kaan Olgu, and Tom Deakin. 2023.
Principles for Automated and Reproducible Benchmarking. InWorkshops
of The International Conference on High Performance Computing, Network,
Storage, and Analysis (SC-W 2023), November 12–17, 2023, Denver, CO, USA.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3624062.3624133

1 INTRODUCTION
Hoefler and Belli [17] eloquently summarised sensible ways to
present performance results in response to the satire presented
by Bailey [3]. Bailey presents a humorous vignette on sharing
performance results which are dubious, such as comparing to un-
optimised serial code, not comparing like-for-like, and “if all else

This work is licensed under a Creative Commons Attribution-NonCommercial
International 4.0 License.

SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0785-8/23/11.
https://doi.org/10.1145/3624062.3624133

fails, show pretty pictures and animated videos” [3]. Hoefler and
Belli provided advice on how to prepare and present performance
results that we could interpret and trust [17]. They express the
importance of documenting and controlling the environment in
which the benchmark is run but do not elaborate on how this can
be tangibly achieved in a practical, repeatable way.

As supercomputing systems are deploying different processor
technologies to reach Exascale, the need to understand the per-
formance of codes running on different systems, perhaps using
different architectures, is becoming vital. This information is cru-
cial when assessing the performance portability of an application
[25]; or in other words, the ability of an application to make the
most of all computational platforms available to the research group
and the protection this offers through assurances of productive
longevity in the investments made in the software.

Our work here addresses this challenge. This paper offers a
practical and rigorous methodology for avoiding the pitfalls of
poor benchmarking practice, providing a framework for conducting
rigorous benchmarking for performance portability. We will show
how our approach provides a robust and rigorousway to collect, and
repeat, performance portability benchmarking studies efficiently.
We build on widely adopted recent technologies and present a
framework and a number of case studies highlighting how the
methodology can be put into practice in a variety of normally
complex and onerous benchmarking studies.

Previous studies by Deakin et al., such as [7], surveyed the per-
formance portability of mini-apps across a range of different pro-
cessors. The mini-apps themselves were written in different pro-
gramming models, with the study providing a snapshot on the state
of the compilers and runtimes on the systems needed to test all
combinations. Collecting the performance results for that study
is estimated to have taken around 18–24 months FTE (full-time
equivalent), noting the study ran in a less elapsed time with the
authors working in parallel and was therefore a highly labour in-
tensive exercise. Whilst such time capsules are useful in evaluating
the current state of the union of programming models on advanced
architectures, and provide a historical record from which we can

609

https://orcid.org/0000-0002-1518-4944
https://orcid.org/0000-0002-5045-7987
https://orcid.org/0000-0002-7218-2873
https://orcid.org/0000-0003-0351-2055
https://orcid.org/0000-0002-6439-4171
https://doi.org/10.1145/3624062.3624133
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3624062.3624133
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624062.3624133&domain=pdf&date_stamp=2023-11-12

SC-W 2023, November 12–17, 2023, Denver, CO, USA Koskela, Christidi, Giordano, Dubrovska, Quinn, Maynard, Case, Olgu and Deakin

identify trends [8], it is clear that conducting sweeps of the perfor-
mance portability of application implementations across several
systems is hugely expensive. It is our ambition to instead invest
in deeper analysis of the codes, implementations, runtimes and
compilers on the different systems, however the burden of bench-
marking restricts the depth whilst maintaining breadth (noting
that the “Bristol Definition” of performance portability seeks to
consider an extreme range of platforms [8]). We will demonstrate
in Section 3.1 how the benchmarking framework presented allows
such performance portability surveys to be more easily obtained.

Benchmarking results from any high-performance system intrin-
sically have a temporal challenge in that they can only be repro-
duced whilst the system is still available. The survey by Plale et
al. [28] gave insights that sharing the code is not enough to repro-
duce results, and in line with “Rule 9” from Hoefler and Belli [17],
documenting the process helps others reproduce the results on
similar systems, or adapt to newer ones sharing a technological
lineage (i.e., the next revision of a similar technology). Whilst the
documentation of a benchmarking process allows for archaeology,
such approaches in our experience can often be developed in an ad
hoc manner and may lose intrinsic knowledge about the state of
system defaults. Attempts to capture this detail, such as that in the
Supercomputing Reproducibility Initiative Author Kit1, may cap-
ture too much detail around irrelevant aspects of the experimental
setup. The focus of these approaches is on the documenting of what
happened for later audit, and not a priori collecting the results with
a view that they should be reproducible.

The methodology set out in Section 2, along with a workflow
building on well-known tools, will provide a practical solution
for benchmarking activity. In Section 3 we showcase the use of
the framework to ask different research questions which require
benchmarking to provide the evidence to answer. In doing this,
we are able to provide appropriate configurations for a range of
benchmarks and supercomputing systems and testbeds in the UK
HPC provision (Tier-1, Tier-2, etc.) providing good coverage of
system and architecture diversity.

In particular, we make the following contributions:
• Define a methodology and set of principles for reproducibly
collecting benchmarking data across diverse systems.

• Build on and extend existing tools in the benchmarking
pipeline into a cohesive workflow.

• Showcase the flexibility of the methodology through case
studies seeking to benchmark different aspects of applica-
tions, systems, or numerical algorithms.

• Share an open-source collated suite of benchmarks and sys-
tem configurations to enable easy reproduction of the results
in the paper, along with a path to adapt them to new appli-
cations and systems.2

2 BENCHMARKING METHODOLOGY
Benchmarking superficially involves simply running a code on a
system and reporting its runtime. We might extend this to survey a

1See the collect_environment.sh script available at https://github.com/SC-Tech-
Program/Author-Kit.
2The Benchmarking Framework is available under the Apache 2.0 license at https:
//github.com/ukri-excalibur/excalibur-tests.

Code

Build

Run

FOM

Analysis

Platform A

Build

Run

FOM

Platform B

Figure 1: A typical workflow for benchmarking the perfor-
mance portability of an application on different systems,
adapted from a diagram from Pennycook et al. [26]

range of different processors to determine which system to buy, or
test different software stacks to find the best optimizing compiler,
or any number of experiments. At this point, the benchmarking
activity becomes significantly more complex, and it is no longer
straightforward to carefully collect and interpret these results.

The illustration of a workflow is abstractly represented in Fig-
ure 1, based on a figure by Pennycook [26]. A benchmarking work-
flow takes a code, compiles and runs a chosen problem size on
different platforms, and extracts a Figure of Merit (FOM), a compa-
rable numeric value that measures the performance of the code on
that platform. The collection of FOMs can then be analysed as a set.
Under this model the problem size is part of the “Code” in so far
as that it is fixed across all platforms. The platforms are abstract,
following the definition of a Platform from Pennycook et al. [27],
whereby it represents the hardware, software, compilers, and run-
times needed to run the benchmark code (or application). Here
lies the challenge, in particular for following Hoefler and Belli’s
advice [17] on keeping as many of the varying factors constant as
possible when comparing one platform to another.

This section explores in detail the best practices for benchmark-
ing across diverse systems and benchmark applications, and defines
a methodology through a series of guiding Principles for repro-
ducible benchmarking. We will also show how we have built a
Benchmarking Framework using Spack [15] and ReFrame [18] that
follows that methodology.

610

https://github.com/SC-Tech-Program/Author-Kit
https://github.com/SC-Tech-Program/Author-Kit
https://github.com/ukri-excalibur/excalibur-tests
https://github.com/ukri-excalibur/excalibur-tests

Principles for Automated and Reproducible Benchmarking SC-W 2023, November 12–17, 2023, Denver, CO, USA

2.1 Choosing and Writing Benchmarks
Although any scientific application can be benchmarked, typically
by just recording the runtime of the application (or of each compo-
nent part), it is often more instructive to be able to reason about
its performance by understanding whether it is making good use
of the underlying hardware. This is important as we move to HPC
ecosystems where supercomputing provision (at a national scale)
is diverse, and applications should be able to use any resources; for
example, this is a focus of the Exascale Computing ALgorithms &
Infrastructures Benefiting UK Research (ExCALIBUR) project in
the UK, which aims to “future proof the UK against the fast-moving
changes in supercomputer designs” and is funding improvements
to software and creating diverse resources through testbeds [13].

A benchmark then needs a way to report the performance on
different platforms (architectures, software stacks, or both). The
United States Exascale Computing Project (ECP) Exascale Proxy
Applications Project recommends proxy apps have a Figure of Merit
(FOM) that enables this comparison [12]. Initially this can be useful,
however collecting such a benchmark result does not provide a clear
understanding of how good the performance is on a particular plat-
form. The focus is on comparing systems and not primarily whether
the application is portable, and performance portable, across differ-
ent systems with perhaps different architectures.

A better approach is one described by Pennycook et al. as ef-
ficiency [25, 27]. When efficiency of the application running on
a specified platform (as a percentage of theoretical peak perfor-
mance, or relative to some unportable highly-optimized code, or
other such ratios) is used, the measure of performance becomes far
more directly comparable over changes in the platform.

Measuring efficiency gives more relevant information. For ex-
ample, the HPCG benchmark was designed to capture the perfor-
mance of memory subsystems, both to better capture how scientific
applications utilise large supercomputers, but also to motivate im-
provements to the relevant parts of computer architecture [10].
Considering runtime alone would not yield such nuanced analyses.

We note that this is not in conflict with Bailey’s humorous “Ninth
Way” of fooling readers by presenting processor utilization [3]. An
efficiency metric does not capture such “busy work”, rather by defi-
nition would penalise wasting the resources. A common example of
this is that memory bandwidth benchmarks such as STREAM [22]
do not count the data moved for a Read-for-Ownership for write in-
structions on some micro-architectures, and therefore performance
models might understate the amount of data moved in reality, but
capture the rate at which data is used usefully. Presenting a hard-
ware measurement of the data moved therefore also captures the
wasteful movement, just as reporting this for codes with unopti-
mised data layouts, due to inefficient use of cache lines for instance,
can indicate a more favourable picture of the utilisation of precious
hardware resources than is otherwise the case—a problem that
can occur with tools that calculate Arithmetic Intensity under the
Roofline model through application measurement [29].

For our purposes here, a key motivation is the exploration of
applications across diverse systems. Which hardware is faster than
another for a given application is not the principal focus, although
of course this data can be gleaned from benchmarking studies and
is more relevant when considering procurement of a system for

a collection of applications. In line with the “Bristol Definition”
of performance portability which we mentioned in Section 1, the
analysis of performance results on different platforms (see again
Figure 1) should be formulated as efficiency (effective use of the
computational resources).�

�
�

Principle 1—A benchmark application should have a Fig-
ure of Merit which can measure (directly or indirectly) the
efficiency of the application on a given platform.

2.2 Building Benchmarks
Building applications on one system can be a significant challenge,
let alone building it many times to test different compilers, numeri-
cal libraries, etc., and further repeat all this on a different system
or architecture. In our experience [7], this is a challenge even on
benchmark codes which don’t have many dependencies beyond a
single parallel programming model, and is thus extremely hard for
more complex applications.

We have previously attempted to encode all the information to
build a particular code on a given platform using Bash scripts.3 This
attempt highlights the complex integration between the benchmark
and the system on which it runs. To address this, we developed
more rigorous CMake scripts for our benchmarks that help reduce
the platform specialisation needed for the parallel programming
model runtime libraries.4

Details aside, the fundamental principle is to encode information
in the build system of the benchmark so that it can easily be built
the correct way on each platform under the assumption that the
dependencies are made available. This ensures that the benchmark
is consistently built using the authors’s knowledge of the code,
reducing the likelihood of it being built incorrectly by others (cu-
rating the “Wisdom of the Crowd” as described by Gamblin and
Katz [14]). Importantly, it also captures the nuances of building
the benchmarks with different libraries, ensuring the knowledge
required to build the codes is shared.�

�
	Principle 2—Teach the build system how to build the bench-

mark using the best known parameters on each platform.
With such knowledge encoded in the build system, it then follows

that this should become the only way the benchmark is built, and
the build procedure is exercised regularly. While we see scientific
software increasingly adopt Continuous Integration (CI) to test
performance through efforts such as the Extreme-Scale Scientific
Software Stack (E4S) project under ECP [11], we should adopt a
similar methodology for performance benchmarking. As such, the
benchmark binary should be rebuilt as regularly as possible, ideally
every time it is run, in order to uphold Principle 2. Insofar as this is
not the case, the binary is no longer reproducible, and performance
results could be curated using forgotten knowledge: magic compiler
options, environment variables, locally installed packages, secrets
in a user’s .bashrc, or other unhygienic software practices. In our
view, it becomes impossible for someone else to reproduce our work
if we ourselves do not reproduce it.

3See https://github.com/UoB-HPC/performance-portability associated with studies
including [7, 8].
4See the build system for BabelStream for example [9]: https://github.com/UoB-HPC/
BabelStream.

611

https://github.com/UoB-HPC/performance-portability
https://github.com/UoB-HPC/BabelStream
https://github.com/UoB-HPC/BabelStream

SC-W 2023, November 12–17, 2023, Denver, CO, USA Koskela, Christidi, Giordano, Dubrovska, Quinn, Maynard, Case, Olgu and Deakin�

�
	Principle 3—Rebuild the benchmark every time it runs to

guarantee the steps to reproduce the binary are known.
We use Spack to drive the builds of our benchmarking applica-

tions. Spack is a popular package manager for HPC programs [15]
which can be installed and updated in user-space if not already
available in the system. It has a built-in dependency solver and
it allows users to build software with multiple variants, allowing
benchmarking experiments such as testing different compilers, etc.,
to be driven in a productive way. Spack uses the existing build
systems (e.g. CMake, Autotools) of applications, rather than solving
the problem of finding and installing the compilers and libraries
the application needs; Spack is therefore agnostic of the language
and build system of the original application. Furthermore, Spack
supports virtual environments, which can be used to ensure re-
producibility of builds. Spack’s concretization mechanism records
these steps so that they can be inspected later (“archaeological
reproducibility”). All these features are instrumental for reliably
building and comparing performance of applications across differ-
ent platforms (using the definition of “platform” from Figure 1).

Spack comes with a large collection of recipes to build thou-
sands of packages, one file for each package. Spack centralises the
knowledge for building scientific software, while being flexible
and enabling users to build multiple versions of a specific package,
and/or with different options. However, it is also possible to create
custom repositories of recipes for packages not included in Spack.

We create a Spack environment detailing the compilers and rele-
vant packages available in all the systems we run benchmarks on, to
reuse as many existing packages as possible, while allowing users
to compile different versions if needed. We make these system-level
Spack configurations available as part of the Benchmarking Frame-
work. If the benchmarks are run on a system not yet supported by
our framework, a basic Spack environment will be automatically
created, but no system packages will be added.

In undertaking this study, we contributed to the centralised Spack
repository recipes for new benchmark applications, and improved
some existing ones, so as to share best practices. At the same time
we keep a local repository of recipes for building applications not
generally relevant for upstream Spack.�

�
�

Principle 4—Capture all steps taken to build the benchmark
on a given platform so it can be reproduced by anyone else
using the system default environment.
Spack makes upholding Principle 4 easy, with shareable config-

uration files capturing nuance on different systems. In combination
with a robust build system under Principle 2, always building
benchmarks with Spack helps ensure the benchmarks are built in a
systematic way and that they can be built by someone else on the
same system in the default environment.

2.3 Running Benchmarks
When running a benchmark on a system, there are a number of
properties that need to be defined:

(1) the runtime configuration of the benchmark, such as problem
size, decomposition scheme, etc.

(2) system job scheduler properties to distribute processes on the
system, including SLURM/PBS parameters, MPI distribution
and affinity, etc.

(3) changes to the default software environment to provide the
necessary run-time libraries, access to drivers, etc.

Some of this information is intrinsic to the benchmark itself, such
as the problem size and input data, and needs to be kept fixed
across different platforms. The remainder is system-specific, and
may be specialised to the platform, either to provide an equivalent
resource on a different system, a different set of runtime libraries
(for example, where you want to test various numerical libraries
such as in the study by McIntosh-Smith et al. [23]), or to provide
an entirely new architecture.�

�
�

Principle 5—Capture all steps to run the built benchmark
so it can be run by anyone on the same system using the
default environment.
There is a clear similarity with Principle 4 and Principle 5; the

benchmark should be able to run on the same system independent
of the user, just as the benchmark should be build-able under the
same. Just as with building, this means the procedure for running
the benchmark with the correct input files and parameters needs
to be scripted. Further, the system specific information, such as job
scheduler parameters, needs to be included in a way that can be eas-
ily changed or adapted separately to the information needed to run
the benchmark (such as problem size, etc.), which is independent
of the system specifics.

ReFrame is a Python-based framework for developing system
regression tests, tailored to HPC facilities [18]. ReFrame helps con-
trol the benchmark execution by providing ways to adapt regres-
sion tests to new systems without changing the tests themselves
through separating the environment and building of the test from
the launching of the test.

One of the main features of ReFrame is that it separates the
description of the benchmarks from the system-specific details for
compiling and running it. A benchmark is defined by implementing
a Python class that specifies how to build the software, which exe-
cutable to run, the inputs and the parallel execution layout. System-
specific details are recorded in a configuration file which includes,
among other things, the job scheduler used, the MPI launcher, the
topology of the nodes, etc. Each system can have multiple parti-
tions, to accommodate cases where sets of nodes differ by one or
more of the above properties. Note that the first abstraction con-
flates some system-specific information with the description of the
benchmark application, however ReFrame provides abstractions to
alleviate this. The benchmark definitions can access some informa-
tion about the system. This means that, for example, it is possible
to automatically run a benchmark on a fixed fraction of the cores
available on a node. Hardcoding this number in the benchmark
script instead would make the benchmark unportable. This allows
the development of portable benchmarks that can be written on one
system and subsequently run on any other system, as long as the
benchmark can be compiled and the required computing resources
are available, and for all the existing compatible benchmarks to be
run on a newly added system.

ReFrame has built-in support for multiple build systems, includ-
ing Spack. We extended this functionality with a ReFrame class to
streamline the integration with the Spack environments provided
by our framework: when the user selects the system where the
benchmarks are being run, this class automatically identifies the

612

Principles for Automated and Reproducible Benchmarking SC-W 2023, November 12–17, 2023, Denver, CO, USA

corresponding Spack environment and copies the relevant files to
the stage directory where the benchmarks will run. This addresses
challenge (3) in the list presented at the beginning of this section,
bringing up the necessary system specific environment in a well
defined and transparent manner to all benchmarks incorporated
into the framework.

2.4 Interpreting Benchmarks
The output of benchmarks is not usually in a format readily avail-
able for the user to interpret. When a large collection of bench-
marking results are generated, they need to be processed to extract
the Figures of Merit, perhaps used to calculate an efficiency (such
as dividing by a theoretical peak value based on the underlying
architecture), and collected together in a single place in order to
begin the analysis step of Figure 1. The curation of disparate data
sets can result in unreproducible processing, or even mistakes, in
the final presentation of data.

ReFrame helps significantly here by providing mechanisms for
extracting the Figures of Merit for application outputs. When defin-
ing a benchmark in ReFrame, it can automatically collect a dictio-
nary of Figures of Merit by parsing the output with user-provided
regular expressions. A similar mechanism is used to check that
the benchmark ran correctly (produced valid output). Benchmark
output data is appended to a performance log (also known as a “per-
flog”) associated with the benchmark on each system, and these logs
can be collated directly and post-processed to extract information
for graphing without manual manipulation or extraction.�

�
�

Principle 6—Assimilate and post-process the data in a pro-
grammablemanner so as tomake extraction and presentation
of Figures of Merit transparent and error-free.
We have developed a set of post-processing scripts to be included

with the benchmarking framework which allow the user to visualise
the results, reading data directly from the perflog output generated
by ReFrame. The components of these scripts can also be used as
a library, and imported into user-made scripts to provide natural
extensions for more complex graphing and analysis.

The post-processing scripts parse the ReFrame output into a
Pandas DataFrame [24]. This representation can efficiently handle
large volumes of data, and Pandas has many useful inbuilt func-
tions that simplify data modification. If more than one perflog is
used for plotting, DataFrames from individual perflogs are con-
catenated together into one DataFrame—this feature is crucial for
cross-platform data assimilation in a predictable manner where
perflogs are generated on isolated systems.

The post-processing scripts also provide a unified way to fil-
ter the perflog and pass selected data to sample plotting scripts,
all controlled via a YAML configuration file. We have a proof-of-
concept way to visualise the plots as a bar chart, developed using
Bokeh [4], that supports multiple data series. There is also ongo-
ing work to provide simplified configurations that can be used to
produce scaling and time-series regression plots. Including post-
processing capabilities in the methodology aids the reproducibility
of benchmarking results. In particular, the steps to assimilate, filter
and present graphical plots of the benchmarking data (the ultimate
aim of the workflow we showed in Figure 1) becomes automated

and reproducible and provides a step forward for a fully integrated
performance portability CI pipeline.

3 BENCHMARKING IN PRACTICE
The act of benchmarking can take many forms. People often put to-
gether benchmark suites in order to test various aspects of systems
at key inflection points in supercomputing technology, for exam-
ple: the HPC Challenge Benchmark Suite for Petascale-sized sys-
tems [21]; Mantevo, tomotivate application-hardware co-design [6];
SPEChpc (and previous suites like SPECaccel) for ever growing het-
erogeneous systems [5]. In each case, benchmark codes were cre-
ated and curated to provide informative measurements on current
and new systems. Whilst benchmarking as a process was crucial to
these studies, it was the data they produced and the timely impact
they had on future developments of software and hardware that
was of most value.

As such, the act of conducting a benchmarking study using an
automated framework needs that tool to be flexible to a variety of
different research questions, whilst supporting a shared underly-
ing methodology such as the one we have outlined in this study.
Here, we share some case-study style benchmarking activities to
demonstrate how the principles we outline are followed by using
the benchmarking framework. These indicative vignettes capture
some common benchmarking patterns, and by providing the tools
and configurations, we enable other communities to do the same.

3.1 Single-node memory bandwidth
BabelStream is a widely-used benchmarking tool designed to as-
sess modern computer systems’ memory bandwidth and perfor-
mance [9]. Its primary purpose is to measure the data transfer rate
between different levels of a memory hierarchy by measuring the
sustained rate of data transfers to and from (main) memory (i.e.,
higher is better). Therefore, it provides a benchmark for the best
case scenario for expected performance of an application bound
by the movement of data. The output metric Triad, expressed in
gigabytes per second (GB/s), is a fundamental figure that represents
the memory bandwidth achieved during the benchmark. Further,
BabelStream is written in many different parallel programming
models and abstractions, and as such, can be used to explore how
performance portable are different programming models
across a wide range of CPUs and GPUs?

Figure 2 demonstrates the ratio of measured bandwidth values
from the Triad kernel to the theoretical peak memory bandwidth
values obtained from Table 1 for a number of CPUs and GPUs. The
rows name the programming models, followed by signs that signifiy
important choices required by that model: the “+” sign indicates
any backend used where the programming model is an abstraction
over another (such as Kokkos over OpenMP); the “%” signals the
compiler name, and the “@” sign is used for the compiler version.

For a fair comparison between different architectures, the array
size should be set such that it forces the data to go beyond the L3
cache size and be read from the main memory. The array size from
the run command is set to be 229 to have a processed data size larger
than the cache sizes. For instance, the AMD Milan 7763 CPU used
in the University of Paderborn system has a 256 MB per socket L3
cache size, equating to 512 MB with two sockets. The run command

613

SC-W 2023, November 12–17, 2023, Denver, CO, USA Koskela, Christidi, Giordano, Dubrovska, Quinn, Maynard, Case, Olgu and Deakin

Table 1: Information about Processors Used for BabelStream
Benchmarks

Cores/ Peak Memory
Vendor Processor Compute Units Bandwidth (GB/s)
Intel Cascade Lake 2x20 2 × 140.784 = 282
Marvell ThunderX2 2x32 288
AMD Milan 2x64 2 × 204.8
NVIDIA V100 80 900

with 229 array size generates an array size of 4295.0 MB (=4.3 GB)
and a total size of 12884.9 MB (=12.9 GB). For the rest, the array size
is kept at 225 since the 4 GB data is unnecessary to process with,
for example, the Intel Cascade Lake CPU, whose cache size is 27.5
MB. The GCC compiler version used for "Isambard-MACS:Volta" is
9.2.0 since the build system has conflicts with newer versions; for
the rest of the environments it is GCC 10.3.0.

Some tests do not work on some environments, either through
incompatibilities (CUDA on CPUs,Intel-TBB on Thunder) or er-
ror messages that need to be addressed in the future: these tests
are highlighted with a “*” sign with white boxes in the figure.
The NVIDIA Volta GPU is close to the peak maximum bandwidth
available when executing benchmarks with OpenCL and CUDA.
OpenMP works on all devices and the performance results for
OpenMP with GCC compiler show us that better utilisation is
achieved with Intel and AMD CPUs.

The throughput of ReFrame execution matches with earlier re-
search [20]. There is a disparity between throughput results of
std-data & std-indices and std-ranges. This was an expected be-
haviour since the multicore version of std-ranges is a work in
progress, and it only executes in a single thread. Also, some sys-
tems do not support using Intel TBB (Thread Building Blocks) for
configuring multicore execution, which results in performance
degradation. This behaviour is evident between paderborn-milan
and isambard-macs:cascadelake TBB execution results, and also
with the std-data and std-indices execution performance differences
between isambard-macs and isambard-xci. We have not observed
any specific degredation in runtime performance between building
BabelStream via Spack, which invokes the normal CMake-based
build system, from invoking the CMake manually.

It is essential to emphasize the positive contributions of ReFrame.
One significant advantage is the marked productivity improvement
in running the tests. In contrast to the previous work [20] that
employed the CMake build system directly and required an exten-
sive multi-month endeavour to accumulate comprehensive test run
data, ReFrame streamlines the process significantly and reduces it
to around a day of work (FTE). This remarkable efficiency in data
collection highlights the potential of ReFrame to boost research
efforts and enhance productivity substantially. Secondly, ReFrame
allows users to configure their test runs with simple command line
tools, and thus easily test different compilers on the same system
(creating a new platform under our definition). Further, once a sys-
tem is added to the configuration in the Benchmarking Framework,
it can be shared with others and new benchmarks in the suite added
without any alterations.

isambard-macs:
cascadelake

isambard-xci paderborn-milan isambard-macs:
volta

Environment

OMP
%gcc
OMP

%oneapi
OMP

%nvhpc
KOKKOS

+OMP%gcc
STD-DATA

%gcc
STD-INDICES

%gcc
STD-RANGES

%gcc
CUDA
%gcc

OpenCL
%gcc
TBB

%gcc
TBB

%oneapi
RAJA

+OMP%gcc

Pr
og
ra
m
m
in
g
M
od

el

58.06% 41.77% 58.75% 18.27%

58.01% 58.66% 18.10%

93.53%

32.44% 40.97% 6.18%

34.55% 5.05% 6.50%

35.45% 5.38% 6.48%

4.91% 4.84% 6.81%

93.59%

93.49%

34.72% 6.35%

33.36% 6.54%

57.52% 40.49% 58.57%

★

★
★

★
★

★
★
★
★

★

★
★

★
★
★
★

★
★
★

Ra5i1 Va.6e4 f13 Ba%e. 53eam T3iad Pe3f13ma0ce Th316gh265 C1m2a3i410

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 2: Figure of Merit for Different Vendor CPU & GPU
results with the GCC v9.2.0 for GPU tests and GCC v12.1.0
compiler and oneAPI 2023.1.0 . The array size for Milan is
229 and 225 for the others.

3.2 Comparing variations/extensions from
standard benchmarks

In science applications there is another dimension or axis to the
space of performance and portability, that of the algorithm. Indeed,
the implementation and algorithm are not independent. In this
section, the framework is used to measure performance of both as-
pects to answer the question: how does the implementation and
algorithm effect the performance on different architectures?

TheHPCG benchmark5 is a sparse linear algebra benchmark [10].
For many scientific applications this can be a better representation
of application performance than other established benchmarks.
Hardware optimised versions are available for several processor
architectures, which allows for effective comparison of different
processors. However, the relatively simple mathematical problem
(Poisson’s Equation in three dimensions) with a Finite-Difference,
27-point stencil and the Compressed Sparse Row (CSR) representa-
tion of the matrix results in specific memory access patterns which
limit how representative the benchmark can be for other scien-
tific problems. The equation, dimensionality, discretisation method
(Spectral, Finite Element, Volume or Difference) and order, as well as
choice matrix storage, will all influence the memory access patterns
which are crucial to the performance of the HPCG benchmark.

Optimisations for specific processor architectures are provided
by some vendors. This is useful in understanding the performance
on these architectures and the HPCG benchmark provides a set of
rules for how to report these. However, comparing a differentmathe-
matical problem to the standard one and vendor optimised standard
problem can assist application developers in understanding how
their application could perform on that platform by providing a
richer set of information. The framework can be used to explore the
algorithmic and implementation space in a rigorous way. Moreover,

5https://www.hpcg-benchmark.org

614

Principles for Automated and Reproducible Benchmarking SC-W 2023, November 12–17, 2023, Denver, CO, USA

Table 2: Results for different HPCG variants on different
architectures in GFlop/s. All results are for MPI only on a
single node. The Intel Xeon Cascade Lake results were for
20-core, dual socket (40 MPI ranks) on Isambard. The AMD
EPYC Rome results were for 64-core, dual socket (128 MPI
ranks) on ARCHER2.

HPCG Variant Intel Cascade Lake AMD Rome
Original (CSR) 24.0 39.2
Intel-avx2 (CSR) 39.0 N/A
Matrix-free 51.0 124.2
LFRic 18.5 56.0

it mitigates against one of Bailey’s twelve tricks—“secretly opti-
mised code on one platform” [3]—which may inadvertently arise
when using vendor optimised binaries.

Matrix storage methods such as CSR used by HPCG allow for
any matrix arising from the equation to be solved. This generality
is useful and this approach is often used by linear algebra libraries
to support solution of generic systems. However, due to the indirect
memory addressing in the method, this may not be fast enough for
some applications. Typically, these applications use the matrix-free
method where the matrix is not assembled, but the operation of
the matrix on a vector is explicitly encoded for given values of the
matrix. Each application requires its own implementation of the
matrix-vector operation, but this can be much more memory and
cache efficient than a general method.

A matrix-free implementation of the 27-point stencil of the orig-
inal problem and a symmetrised version of the Helmholtz operator
from the Met Office weather and climate model, known as LFRic [2],
have been implemented. These can then be compared to the stan-
dard, CSR, version. Shown in Table 2 are the results of running
the HPCG benchmark in the framework on various HPC machines
for the different variations. The result labelled “Intel-avx2” is the
best performing of the three binaries provided by Intel as part of
the Intel oneAPI MKL library. The technical details of the LFRic
Helmholtz operator are relevant for the application developer but
not for the purposes of this paper, only that an application specific
representation of the matrix can be employed in the framework
and compared to the other implementations. Even with the limited
set of comparisons shown here, the size of changes from processor,
algorithm and implementation allow the application developer to
estimate what expected maximum performance could be achieved
with their application and an optimised implementation of the
relevant algorithm.

Comparing the ratios of different aspects allows the notion of
efficiency and thus satisfies Principle 2 defined in Section 2. For
example, comparing the FOM for the vendor optimised implementa-
tion to the algorithmic variation with the standard implementation:

𝐸 =
VAR
ORIG

(1)

gives 𝐸𝐼 = 1.625 for the (Intel) implementation optimisation but
the algorithmic variation of CSR to matrix-free, 𝐸𝐴 = 2.125 is
greater. For the AMD processor the algorithmic gain is even larger,
𝐸𝐴 = 3.168. This allows some quantification for how much more

Table 3: Concretized build dependencies of the HPGMG-FV
benchmark using the hpgmg%gcc spec

System gcc Python MPI library
ARCHER2 11.2.0 3.10.12 cray-mpich 8.1.23
COSMA8 11.1.0 2.7.15 mvapich 2.3.6
CSD3 11.2.0 3.8.2 openmpi 4.0.4
Isambard-macs 9.2.0 3.7.5 openmpi 4.0.3

efficient algorithmic optimisation is, than optimising the imple-
mentation; echoing observations in the 2010 SCALES report [19].
The initial results presented here are limited in scope but demon-
strate the principle. Using this approach, a comprehensive study
across many processor architectures, with implementation or ven-
dor optimisations and algorithmic choices, could be performed.
This collated information would allow a comprehensive map of the
algorithm/implementation/processor architecture landscape to be
determined.

3.3 Supercomputing provision survey
We have configured the framework on a selection of the UK HPC
systems used by the scientific community. As a proof of point, we
installed the framework on four of these systems: ARCHER2, CSD3,
COSMA8 and Isambard’s Multi-Architecture Comparison System,
and thus the framework provides a rubric for others to build and run
the benchmarks on any of those systems using a single workflow.
With this case study, we explore the performance portability
of a benchmark across systems with roughly similar archi-
tectures and programming environments, with a longer term
view that this data is crucial for ensuring systems and applications
are (or become) performance portable between similar systems.

We demonstrate running the HPGMG-FV benchmark [1] on
the four systems. HPGMG-FV solves elliptic PDEs using the finite
volume method (FV) and a Full Multigrid (FMG) algorithm, making
it a useful proxy for scientific applications built on PDE solvers such
as [16]. We specified the Spack specification hpgmg%gcc to use the
gcc compiler, and used eight tasks, two tasks per node, eight CPUs
per task in ReFrame; although each system has a different number of
cores than this, we use this to demonstrate running the benchmark
in a fixed configuration on all systems. The default FV variant of the
HPGMG benchmark has two build dependencies, MPI and Python.
We let Spack determine the versions of the dependencies, and report
what was used in Table 3. We use the command line arguments 7 8
to set the box size and number of boxes per process in HPGMG-FV.6

This example is not meant to be a comprehensive comparison of
the four systems, but rather a demonstration of the capabilities of
the benchmarking framework for a benchmarking experiment such
as this.We report the three Figures ofMerit reported byHPGMG-FV
as captured by ReFrame in Table 4.

The results are presented here to demonstrate that comparable
results are straightforward to collect using the framework. We do
not comment specifically on the performance of the benchmark on
the different systems, however the results indicate that specifics of

6The inputs to HPGMG follow the example in https://bitbucket.org/hpgmg/hpgmg/
src/master/README.md

615

https://bitbucket.org/hpgmg/hpgmg/src/master/README.md
https://bitbucket.org/hpgmg/hpgmg/src/master/README.md

SC-W 2023, November 12–17, 2023, Denver, CO, USA Koskela, Christidi, Giordano, Dubrovska, Quinn, Maynard, Case, Olgu and Deakin

Table 4: Figures of Merit of HPGMG-FV benchmark, where
results are reported as a compute rate of 106 DOF/s

System 𝑙0 𝑙1 𝑙2
ARCHER2 (Rome) 95.36 83.43 62.18
COSMA8 (Rome) 81.67 72.96 75.09
CSD3 (Cascade Lake) 126.10 94.39 49.40
Isambard (Cascade Lake) 30.59 25.55 17.55

the platform can impact the performance of a benchmark signifi-
cantly beyond changes in the underlying architecture. As shown
here, the benchmark is not necessarily performance portable out of
the box, even with consistent approaches to building and running
the code (under Principle 4 and 5), and this is vital information
for further developments to improve performance, portability, and
performance portability. Indeed, these preliminary results should be
used as exemplar motivation that cross-system performance regres-
sion testing is now a fundamental necessity of scientific software
development, and with the framework as presented we provide an
integrable approach which can form the basis of a CI pipeline to test
the stable of supercomputers available to scientific communities on
a regular basis.

4 CONCLUSION
Benchmarking in a rigorous and reproducible manner is a signif-
icant challenge. This is further exacerbated by the diversity in
supercomputer architectures that an application needs to run on.
This means testing that it will build, run, and run with good effi-
ciency, across all systems of interest is a crucial part of scientific
software development today.

Testing the performance of codes—benchmarking them—is there-
fore a significant undertaking of effort when multiple platforms are
involved. Understanding and recording the changes in program-
ming environments, compilers and other factors are vital to ensure
that the performance results can be reproduced, and compared
fairly between results of the same code prepared on other systems.

The methodology presented here shares some guiding principles
for the art of benchmarking. By following these principles, the
benchmarking results can be generated in a way that is reproducible
both by the benchmark-er, and by others wishing to repeat or build
on the initial experiments. The principles outline the best practices
for undertaking a benchmarking activity, and we encourage future
benchmarking studies to adopt these principles for ensuring the
performance data presented doesn’t “Fool the Masses” [3].

The benchmarking principles apply to a wide variety of bench-
marking studies, as we shared with the case studies in Section 3.
As with all performance results, these snapshots are presented as
case studies for how following the methodology proposed can yield
interesting datasets for further analysis and optimisation.

By automating the design and collection of benchmarking data
in a framework, in our case built on Spack and ReFrame, the way is
paved for making changes in performance as important as changes
in answers for scientific applications. Going forward, we plan to
enhance the framework with more analysis capability so that a
sweep of performance data across diverse computer systems in
the UK ecosystem can be run as part of a CI pipeline, and enable

researchers to measure and track the performance portability of
their applications over time. In addition, we are planning to add
functionality to capture relevant parameters of the system state dur-
ing the runtime of the benchmarks, such as network or filesystem
usage levels or energy consumption.

ACKNOWLEDGMENTS
This work was supported by the Engineering and Physical Sciences
Research Council [EP/X031829/1].

This work used the Isambard 2 UK National Tier-2 HPC Service
(http://gw4.ac.uk/isambard/) operated by GW4 and the UK Met
Office, and funded by EPSRC (EP/T022078/1).

This work used the ARCHER2 UK National Supercomputing
Service (https://www.archer2.ac.uk).

This work was performed using resources provided by the
Cambridge Service for Data Driven Discovery (CSD3) operated
by the University of Cambridge Research Computing Service
(www.csd3.cam.ac.uk), provided by Dell EMC and Intel using Tier-
2 funding from the Engineering and Physical Sciences Research
Council (capital grant EP/T022159/1), and DiRAC funding from the
Science and Technology Facilities Council (www.dirac.ac.uk).

This work used the DiRAC@Durham facility managed by the In-
stitute for Computational Cosmology on behalf of the STFC DiRAC
HPC Facility (www.dirac.ac.uk). The equipment was funded by BEIS
capital funding via STFC capital grants ST/P002293/1, ST/R002371/1
and ST/S002502/1, Durham University and STFC operations grant
ST/R000832/1. DiRAC is part of the National e-Infrastructure.

The authors gratefully acknowledge the computing time pro-
vided to them on the high-performance computers Noctua2 at
the NHR Center PC2. These are funded by the Federal Ministry
of Education and Research and the state governments participat-
ing on the basis of the resolutions of the GWK for the national
high-performance computing at universities (www.nhr-verein.de/
unsere-partner).

REFERENCES
[1] Mark F. Adams, Jed Brown, John Shalf, Brian Van Straalen, Erich Strohmaier, and

Samuel Williams. 2014. HPGMG 1.0: A Benchmark for Ranking High Performance
Computing Systems. Technical Report. LBNL 6630E.

[2] S.V. Adams, R.W. Ford, M. Hambley, J.M. Hobson, I. Kavčič, C.M. Maynard, T.
Melvin, E.H. Müller, S. Mullerworth, A.R. Porter, M. Rezny, B.J. Shipway, and
R. Wong. 2019. LFRic: Meeting the challenges of scalability and performance
portability in Weather and Climate models. J. Parallel and Distrib. Comput. 132
(2019), 383–396. https://doi.org/10.1016/j.jpdc.2019.02.007

[3] David H. Bailey. 1991. Twelve ways to fool the masses when giving performance
results on parallel computers. Supercomputing Review 4, 8 (August 1991), 54–55.

[4] BokehDevelopment Team. 2018. Bokeh: Python library for interactive visualization.
Bokeh Contributors. https://bokeh.pydata.org/en/latest/

[5] Holger Brunst, Sunita Chandrasekaran, Florina M. Ciorba, Nick Hagerty, Robert
Henschel, Guido Juckeland, Junjie Li, Verónica G. Melesse Vergara, Sandra
Wienke, and Miguel Zavala. 2022. First Experiences in Performance Bench-
marking with the New SPEChpc 2021 Suites. In 2022 22nd IEEE International
Symposium on Cluster, Cloud and Internet Computing (CCGrid). IEEE, Taormina,
Italy, 675–684. https://doi.org/10.1109/CCGrid54584.2022.00077

[6] Paul Stewart Crozier, Heidi K Thornquist, Robert W Numrich, Alan B Williams,
Harold Carter Edwards, Eric Richard Keiter, Mahesh Rajan, James MWillenbring,
Douglas W Doerfler, and Michael Allen Heroux. 2009. Improving performance
via mini-applications. Technical Report. Sandia National Laboratories (SNL),
Albuquerque, NM, and Livermore, CA

[7] Tom Deakin, Simon McIntosh-Smith, James Price, Andrei Poenaru, Patrick Atkin-
son, Codrin Popa, and Justin Salmon. 2019. Performance Portability across
Diverse Computer Architectures. In 2019 IEEE/ACM International Workshop on
Performance, Portability and Productivity in HPC (P3HPC). IEEE, Denver, CO, 1–13.
https://doi.org/10.1109/P3HPC49587.2019.00006

616

http://gw4.ac.uk/isambard/
https://www.archer2.ac.uk
www.csd3.cam.ac.uk
www.dirac.ac.uk
www.dirac.ac.uk
www.nhr-verein.de/unsere-partner
www.nhr-verein.de/unsere-partner
https://doi.org/10.1016/j.jpdc.2019.02.007
https://bokeh.pydata.org/en/latest/
https://doi.org/10.1109/CCGrid54584.2022.00077
https://doi.org/10.1109/P3HPC49587.2019.00006

Principles for Automated and Reproducible Benchmarking SC-W 2023, November 12–17, 2023, Denver, CO, USA

[8] Tom Deakin, Andrei Poenaru, Tom Lin, and Simon McIntosh-Smith. 2020. Track-
ing Performance Portability on the Yellow Brick Road to Exascale. In 2020
IEEE/ACM International Workshop on Performance, Portability and Productiv-
ity in HPC (P3HPC). IEEE, GA, USA, 1–13. https://doi.org/10.1109/P3HPC51967.
2020.00006

[9] Tom Deakin, James Price, Matt Martineau, and Simon McIntosh-Smith. 2018.
Evaluating attainable memory bandwidth of parallel programming models via
BabelStream. International Journal of Computational Science and Engineering 17,
3 (2018), 247–262. https://doi.org/10.1504/IJCSE.2018.095847 Special Issue on
Novel Strategies for Programming Accelerators.

[10] Jack Dongarra, Michael Heroux, and Piotr Luszczek. 2015. High-performance
conjugate-gradient benchmark: A newmetric for ranking high-performance com-
puting systems. International Journal of High Performance Computing Applications
30 (08 2015), 3–10. Issue 1. https://doi.org/10.1177/1094342015593158

[11] Exascale Computing Project. 2019. Software Technology Update. Technical Report.
United States Department of Energy Office of Science and National Nuclear
Security Administration.

[12] Exascale Proxy Applications Project. 2022. Proxy App Quality Standards and
Best Practices. Available at https://proxyapps.exascaleproject.org/standards/
(2023/07/31).

[13] ExCALIBUR. 2022. About ExCALIBUR. Available at https://excalibur.ac.uk/about-
excalibur/ (2023/07/31).

[14] Todd Gamblin and Daniel S. Katz. 2022. Overcoming Challenges to Continuous
Integration in HPC. Computing in Science & Engineering 24, 6 (2022), 54–59.
https://doi.org/10.1109/MCSE.2023.3263458

[15] Todd Gamblin, Matthew LeGendre, Michael R. Collette, Gregory L. Lee, Adam
Moody, Bronis R. de Supinski, and Scott Futral. 2015. The Spack PackageManager:
Bringing Order to HPC Software Chaos. In SC ’15: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
Association for Computing Machinery, Austin, Texas, USA, 1–12. https://doi.
org/10.1145/2807591.2807623 LLNL-CONF-669890.

[16] David A. Ham, Paul H. J. Kelly, Lawrence Mitchell, Colin J. Cotter, Robert C.
Kirby, Koki Sagiyama, Nacime Bouziani, Sophia Vorderwuelbecke, Thomas J.
Gregory, Jack Betteridge, Daniel R. Shapero, Reuben W. Nixon-Hill, Connor J.
Ward, Patrick E. Farrell, Pablo D. Brubeck, India Marsden, Thomas H. Gibson,
Miklós Homolya, Tianjiao Sun, Andrew T. T. McRae, Fabio Luporini, Alastair
Gregory, Michael Lange, Simon W. Funke, Florian Rathgeber, Gheorghe-Teodor
Bercea, and Graham R. Markall. 2023. Firedrake User Manual (first edition ed.).
Imperial College London and University of Oxford and Baylor University and
University of Washington. https://doi.org/10.25561/104839

[17] Torsten Hoefler and Roberto Belli. 2015. Scientific Benchmarking of Parallel
Computing Systems: Twelve Ways to Tell the Masses When Reporting Perfor-
mance Results. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (Austin, Texas) (SC ’15).
Association for Computing Machinery, New York, NY, USA, Article 73, 12 pages.
https://doi.org/10.1145/2807591.2807644

[18] Vasileios Karakasis, Theofilos Manitaras, Victor Holanda Rusu, Rafael Sarmiento-
Pérez, Christopher Bignamini, Matthias Kraushaar, Andreas Jocksch, Samuel
Omlin, Guilherme Peretti-Pezzi, João P. S. C. Augusto, Brian Friesen, Yun He,
Lisa Gerhardt, Brandon Cook, Zhi-Qiang You, Samuel Khuvis, and Karen Tomko.
2020. Enabling Continuous Testing of HPC Systems Using ReFrame. In Tools
and Techniques for High Performance Computing, Guido Juckeland and Sunita
Chandrasekaran (Eds.). Springer International Publishing, Cham, 49–68.

[19] David E. Keyes and Office of Science. 2004. A Science-based Case for Large-scale
Simulation Volume 2. U.S. Department of Energy, Washington, DC, Chapter 10
Plasma Science: Taming a Star, 123–134.

[20] Wei-Chen Lin, Tom Deakin, and Simon McIntosh-Smith. 2022. Evaluating ISO
C++ Parallel Algorithms on Heterogeneous HPC Systems. In 2022 IEEE/ACM
International Workshop on Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems (PMBS). IEEE, Dallas, TX, 36–47. https:
//doi.org/10.1109/PMBS56514.2022.00009

[21] Piotr Luszczek, Jack J. Dongarra, David Koester, Rolf Rabenseifner, Bob Lucas,
Jeremy Kepner, John McCalpin, David Bailey, and Daisuke Takahashi11. 2005. In-
troduction to the HPC Challenge Benchmark Suite. In Supercomputing. 12 pages.

[22] John D. McCalpin. 1995. Memory Bandwidth and Machine Balance in Current
High Performance Computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter (December 1995), 19–25.

[23] Simon McIntosh-Smith, James Price, Andrei Poenaru, and Tom Deakin. 2019.
Benchmarking the first generation of production quality Arm-based supercom-
puters. Concurrency and Computation: Practice and Experience 32 (November
2019), 12 pages. Issue 20. https://doi.org/10.1002/cpe.5569 special issue.

[24] The pandas development team. 2020. pandas-dev/pandas: Pandas. pandas-dev.
https://doi.org/10.5281/zenodo.3509134

[25] S.J. Pennycook, J.D. Sewall, and V.W. Lee. 2019. Implications of a metric for
performance portability. Future Generation Computer Systems 92 (2019), 947–958.
https://doi.org/10.1016/j.future.2017.08.007

[26] S. John Pennycook, Jason Sewall, Douglas Jacobsen, TomDeakin, Yuliana Zamora,
and Kin Long Kelvin Lee. 2023. Performance, Portability and Productivity Analysis

Library. Intel. https://doi.org/10.5281/zenodo.7733678
[27] S. John Pennycook, Jason D. Sewall, DouglasW. Jacobsen, TomDeakin, and Simon

McIntosh-Smith. 2021. Navigating Performance, Portability, and Productivity.
Computing in Science & Engineering 23, 5 (2021), 28–38. https://doi.org/10.1109/
MCSE.2021.3097276

[28] Beth A. Plale, Tanu Malik, and Line C. Pouchard. 2021. Reproducibility Practice in
High-Performance Computing: Community Survey Results. Computing in Science
& Engineering 23, 5 (2021), 55–60. https://doi.org/10.1109/MCSE.2021.3096678

[29] Charlene Yang, Rahulkumar Gayatri, Thorsten Kurth, Protonu Basu, Zahra Ron-
aghi, Adedoyin Adetokunbo, Brian Friesen, Brandon Cook, Douglas Doerfler,
Leonid Oliker, Jack Deslippe, and Samuel Williams. 2018. An Empirical Roofline
Methodology for Quantitatively Assessing Performance Portability. In 2018
IEEE/ACM International Workshop on Performance, Portability and Productivity in
HPC (P3HPC). IEEE, Dallas, TX, 14–23. https://doi.org/10.1109/P3HPC.2018.00005

A ARTIFACT DESCRIPTION APPENDIX:
PRINCIPLES FOR AUTOMATED AND
REPRODUCIBLE BENCHMARKING

This study shared a set of Principles for reproducible benchmark-
ing, and provides a methodology for collecting benchmarking data
across different platforms, including supercomputing systems with
different architectures. A Benchmarking Framework was devel-
oped following the Principles we outlined using Spack [15] and
ReFrame [18].

We use the framework to collected performance results in three
case-study experiments, and presented the preliminary results in
Section 3. The framework by design allows the results to be repro-
duced on the different systemswe used (ARCHER2, CSD3, COSMA8,
Isambard, and Noctua2). Details of the processors used is shown
in Table 5 The abstractions in the framework are such that it is
straightforward to adapt the system configurations to a new system
and reproduce the benchmarking there.

A.1 Reproducibility of Experiments
The Benchmarking Framework is available from https://github.com/
ukri-excalibur/excalibur-tests. The installation workflow on each
system is identical, once a compatible Python module has been
loaded into the user’s $PATH environment variable and a suitable
working directory has been selected. The Framework depends on
Spack, which should be installed prior to the installation of the
Framework, noting that ReFrame is installed automatically with
the Framework installation. The installation instructions can be
found in the project README, and an example setup script can be
found in the excalibur-tests repository.7 The setup workflow
can be summarized as:

(1) Create a Python virtual environment
(2) Clone the excalibur-tests repository
(3) Run pip install excalibur-tests (with –editable)
(4) Install the Spack package manager, and make it available in

your $PATH environment variable
(5) Set the RFM_CONFIG_FILES environment variable so Re-

Frame can locate the benchmark configurations included
in the Benchmarking Framework

After the setup is done, a benchmark is run by invoking ReFrame.
Key points to be aware of when running ReFrame are:

• Accounting varies between HPC systems. On most systems,
the account with the access to a time allocation has to be

7https://github.com/ukri-excalibur/excalibur-tests/blob/tk-portability-demo/demo/
setup.sh

617

https://doi.org/10.1109/P3HPC51967.2020.00006
https://doi.org/10.1109/P3HPC51967.2020.00006
https://doi.org/10.1504/IJCSE.2018.095847
https://doi.org/10.1177/1094342015593158
https://proxyapps.exascaleproject.org/standards/
https://excalibur.ac.uk/about-excalibur/
https://excalibur.ac.uk/about-excalibur/
https://doi.org/10.1109/MCSE.2023.3263458
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.25561/104839
https://doi.org/10.1145/2807591.2807644
https://doi.org/10.1109/PMBS56514.2022.00009
https://doi.org/10.1109/PMBS56514.2022.00009
https://doi.org/10.1002/cpe.5569
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1016/j.future.2017.08.007
https://doi.org/10.5281/zenodo.7733678
https://doi.org/10.1109/MCSE.2021.3097276
https://doi.org/10.1109/MCSE.2021.3097276
https://doi.org/10.1109/MCSE.2021.3096678
https://doi.org/10.1109/P3HPC.2018.00005
https://github.com/ukri-excalibur/excalibur-tests
https://github.com/ukri-excalibur/excalibur-tests
https://github.com/ukri-excalibur/excalibur-tests/blob/tk-portability-demo/demo/setup.sh
https://github.com/ukri-excalibur/excalibur-tests/blob/tk-portability-demo/demo/setup.sh

SC-W 2023, November 12–17, 2023, Denver, CO, USA Koskela, Christidi, Giordano, Dubrovska, Quinn, Maynard, Case, Olgu and Deakin

Table 5: Details of the processors used in this study

System Processor Core count
Isambard Marvell ThunderX2 @ 2.5 GHz 32 cores/socket, dual-socket

Isambard MACS Intel Xeon Gold 6230 @ 2.1 GHz (Cascade Lake) 20 cores/socket, dual-socket
Isambard MACS NVIDIA Tesla V100 PCIe 16 GB -

COSMA8 AMD EPYC 7H12 (Rome) @ 2.6 GHz 64 codes/socket, dual-socket
ARCHER2 AMD EPYC 7742 (Rome) @ 2.25 GHz 64 codes/socket, dual-socket
CSD3 Intel Xeon Platinum 8276 (Cascade Lake) @ 2.2 GHz 28 cores/socket, dual-socket

Noctua2 AMD EPYC 7763 (Milan) @ 2.45 GHz 64 cores/socket, dual-socket

passed to ReFrame with the -J’–account’ command line
option.

• The framework will attempt to identify the system but due to
ambiguity of login node names, explicitly naming the system
with the –system command line option helps avoid some
errors.

• The Spack specification chosen should be specified on the
command line with the -S spack_spec option to ensure the
same toolchain is used on all systems. Most benchmarks will
use a default specification. The Spack specification that was
used by ReFrame will be recorded in the log files after the
benchmark run has completed.

• The hardware requirements of the benchmark can be speci-
fied on the command line with the –setvar command line
option. The size of a job is determined by the combination
of a number of options: num_tasks, num_cpus_per_task,
and num_tasks_per_node. Some of the applications, such
as BabelStream, that are included as part of the Benchmark-
ing Framework will use the maximum number of CPUs per
task unless overridden on the invocation of ReFrame on the
command line.

In the following sections we provide links to the ReFrame invo-
cations used to collect the results presented in Section 3. In all cases,
ReFrame will check the benchmarks have been executed correctly,
and produce the performance in the performance log (“perflog”) file.
The results presented in the tables in the main paper were extracted
from the ReFrame output, which is also saved in the perflog. All
the benchmarks have a short runtime of at most a few minutes on
the hardware we tested.

A.1.1 Running BabelStream with the Benchmarking Framework.
The invocations of the Benchmarking Framework using ReFrame
for the BabelStream experiment in Section 3.1 are available online.8

An example ReFrame command for running OpenMP using the
GCC compiler on a Cascade Lake processor in the Isambard super-
computer is as follows:

reframe -c benchmarks/apps/babelstream -r --tag omp
--system=isambard-macs:cascadelake -S
build_locally=false -S
spack_spec='babelstream%gcc@9.2.0 +omp'

↩→

↩→

↩→

Note: the std-data and std-indices parallel versions are in “op-
tion_for_vec” branch

8https://gist.github.com/tomdeakin/258867a79a363f2007e356c49f14f3b3

A.1.2 Running HPCG with the Benchmarking Framework. The in-
vocations of the Benchmarking Framework using ReFrame for the
HPCG experiment in Section 3.2 are available online.9

An example ReFrame command for running our modified HPCG
benchmark on a Cascade Lake processor in the Isambard supercom-
puter is as follows:
reframe -c benchmarks/apps/hpcg -r -n HPCG_ -x

HPCG_Intel --system isambard-macs:cascadelake
--performance-report -S build_locally=false

↩→

↩→

A.1.3 Running HPGMG-FVwith the Benchmarking Framework. The
invocations of the Benchmarking Framework using ReFrame for
the HPGMG-FV experiment in Section 3.3 are available online, and
were invoked similarly to ./run.sh hpgmg gcc archer2.10

An example ReFrame command for running the HPGMG-FV
benchmark on the AMD Rome processor in the ARCHER2 super-
computer, as evaluated in the run.sh script, is as follows:
reframe -c excalibur-tests/benchmarks/apps/hpgmg -r

-J'--qos=standard' --system archer2 -S
spack_spec=hpgmg%gcc --setvar=num_cpus_per_task=8
--setvar=num_tasks_per_node=2 --setvar=num_tasks=8

↩→

↩→

↩→

9https://github.com/ukri-excalibur/excalibur-tests/pull/196
10https://github.com/ukri-excalibur/excalibur-tests/blob/tk-portability-
demo/demo/run.sh

618

https://gist.github.com/tomdeakin/258867a79a363f2007e356c49f14f3b3
https://github.com/ukri-excalibur/excalibur-tests/pull/196
https://github.com/ukri-excalibur/excalibur-tests/blob/tk-portability-demo/demo/run.sh
https://github.com/ukri-excalibur/excalibur-tests/blob/tk-portability-demo/demo/run.sh

	Abstract
	1 Introduction
	2 Benchmarking Methodology
	2.1 Choosing and Writing Benchmarks
	2.2 Building Benchmarks
	2.3 Running Benchmarks
	2.4 Interpreting Benchmarks

	3 Benchmarking in Practice
	3.1 Single-node memory bandwidth
	3.2 Comparing variations/extensions from standard benchmarks
	3.3 Supercomputing provision survey

	4 Conclusion
	Acknowledgments
	References
	A Artifact Description Appendix: Principles for Automated and Reproducible Benchmarking
	A.1 Reproducibility of Experiments

