234 research outputs found

    Advancing characterisation with statistics from correlative electron diffraction and X-ray spectroscopy, in the scanning electron microscope.

    Get PDF
    The routine and unique determination of minor phases in microstructures is critical to materials science. In metallurgy alone, applications include alloy and process development and the understanding of degradation in service. We develop a correlative method, exploring superalloy microstructures, which are examined in the scanning electron microscope (SEM) using simultaneous energy dispersive X-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD). This is performed at an appropriate length scale for characterisation of carbide phases' shape, size, location, and distribution. EDS and EBSD data are generated using two different physical processes, but each provide a signature of the material interacting with the incoming electron beam. Recent advances in post-processing, driven by 'big data' approaches, include use of principal component analysis (PCA). Components are subsequently characterised to assign labels to a mapped region. To provide physically meaningful signals, the principal components may be rotated to control the distribution of variance. In this work, we develop this method further through a weighted PCA approach. We use the EDS and EBSD signals concurrently, thereby labelling each region using both EDS (chemistry) and EBSD (crystal structure) information. This provides a new method of amplifying signal-to-noise for very small phases in mapped regions, especially where the EDS or EBSD signal is not unique enough alone for classification

    Mechanical properties and microstructure of additively manufactured stainless steel with laser welded joints

    Get PDF
    Powder bed fusion (PBF) is a commonly employed metal additive manufacturing (AM) process in which components are built, layer-by-layer, using metallic powder. The component size is limited by the internal build volume of the employed PBF AM equipment; the fabrication of components larger than this volume therefore requires mechanical joining methods, such as laser welding. There are, however, very limited test data on the mechanical performance of PBF metal with laser welded joints. In this study, the mechanical properties of PBF built 316L stainless steel parts, joined together using laser welding to form larger components, have been investigated; the microstructure of the components has also been examined. 33 PBF 316L stainless steel tensile coupons, with central laser welds, welded using a range of welding parameters, and with coupon half parts built in two different orientations, were tested. The porosity, microhardness and microstructure of the welded coupons, along with the widths of the weld and heat-affected zone (HAZ), were characterised. The PBF base metal exhibited a typical cellular microstructure, while the weld consisted of equiaxed, columnar and cellular dendrite microstructures. Narrow weld regions and HAZs were observed. The PBF base metal was found to have higher proof and ultimate strengths, but a similar fracture strain and a lower Young’s modulus, compared with conventionally manufactured 316L stainless steel. The strengths were dependent on the build direction – the vertically built specimens showed lower proof strengths than the horizontal specimens. The laser welds generally exhibited lower microhardness, proof strengths and fracture strains than the PBF base metal which correlated with the observed structure. This work has demonstrated that PBF built parts can be joined by laser welding to form larger components and provided insight into the resulting strength and ductility

    High Accuracy Protein Identification: Fusion of solid-state nanopore sensing and machine learning

    Full text link
    Proteins are arguably the most important class of biomarkers for health diagnostic purposes. Label-free solid-state nanopore sensing is a versatile technique for sensing and analysing biomolecules such as proteins at single-molecule level. While molecular-level information on size, shape, and charge of proteins can be assessed by nanopores, the identification of proteins with comparable sizes remains a challenge. Here, we present methods that combine solid-state nanopore sensing with machine learning to address this challenge. We assess the translocations of four similarly sized proteins using amplifiers with bandwidths (BWs) of 100 kHz (sampling rate=200 ksps) and 10 MHz (sampling rate=40 Msps), the highest bandwidth reported for protein sensing, using nanopores fabricated in <10 nm thick silicon nitride membranes. F-values of up to 65.9% and 83.2% (without clustering of the protein signals) were achieved with 100 kHz and 10 MHz BW instruments, respectively, for identification of the four proteins. The accuracy of protein identification was significantly improved by grouping the signals into several clusters depending on the event features, resulting in F-value and specificity reaching as high as 88.7% and 96.4%, respectively, for combinations of four proteins. The combined improvement in sensor signals through the use of high bandwidth instruments, advanced clustering, machine learning, and other advanced data analysis methods allows identification of proteins with high accuracy

    Effects of EPO on blood parameters and running performance in Kenyan athletes

    Get PDF
    Introduction: Recombinant human erythropoietin (rHuEpo) administration enhances oxygen carrying capacity and performance at sea level. It remains unknown whether similar effects would be observed in chronic altitude-adapted endurance runners. The aim of this study was to assess the effects of rHuEpo on hematological and performance parameters in chronic altitude-adapted endurance runners as compared to sea level athletes. Methods: Twenty well-trained Kenyan endurance runners (KEN) living and training at approximately 2150 m received rHuEpo injections of 50 IU·kg−1 body mass every 2 d for 4 wk and responses compared with another cohort (SCO) that underwent an identical protocol at sea level. Blood samples were obtained at baseline, during rHuEpo administration and 4 wk after the final injection. A maximal oxygen uptake (V˙O2max) test and 3000-m time trial was performed before, immediately after and 4 wk after the final rHuEpo injection. Results: Hematocrit (HCT) and hemoglobin concentration (HGB) were higher in KEN compared to SCO before rHuEpo but similar at the end of administration. Before rHuEpo administration, KEN had higher V˙O2max and faster time trial performance compared to SCO. After rHuEpo administration, there was a similar increase in V˙O2max and time trial performance in both cohorts; most effects of rHuEpo were maintained 4 wk after the final rHuEpo injection in both cohorts. Conclusions: Four weeks of rHuEpo increased the HGB and HCT of Kenyan endurance runners to a lesser extent than in SCO (~17% vs ~10%, respectively) and these alterations were associated with similar improvements in running performance immediately after the rHuEpo administration (~5%) and 4 wk after rHuEpo (~3%)

    Strong and Broadband Pure Optical Activity in 3D Printed THz Chiral Metamaterials

    Full text link
    Optical activity (polarization rotation of light) is one of the most desired features of chiral media, as it is important for many polarization related applications. However, in the THz region, chiral media with strong optical activity are not available in nature. Here, we study theoretically, and experimentally a chiral metamaterial structure composed of pairs of vertical U-shape resonators of "twisted" arms, and we reveal that it demonstrates large pure optical activity (i.e. optical activity associated with negligible transmitted wave ellipticity) in the low THz regime. The experimental data show polarization rotation up to 25 (deg) for an unmatched bandwidth of 1 THz (relative bandwidth 80 %), from a 130 um-thickness structure, while theoretical optimizations show that the rotation can reach 45 (deg). The enhanced chiral response of the structure is analyzed through an equivalent RLC circuit model, which provides also simple optimization rules for the enhancement of its chiral response. The proposed chiral structures allow easy fabrication via direct laser writing and electroless metal plating, making them suitable candidates for polarization control applications.Comment: 17 pages, 7 figure

    Haemoglobin mass and running time trial performance after recombinant human erythropoietin administration in trained men

    Get PDF
    &lt;p&gt;Recombinant human erythropoietin (rHuEpo) increases haemoglobin mass (Hbmass) and maximal oxygen uptake (v˙ O2 max).&lt;/p&gt; &lt;p&gt;Purpose: This study defined the time course of changes in Hbmass, v˙ O2 max as well as running time trial performance following 4 weeks of rHuEpo administration to determine whether the laboratory observations would translate into actual improvements in running performance in the field.&lt;/p&gt; &lt;p&gt;Methods: 19 trained men received rHuEpo injections of 50 IUNkg21 body mass every two days for 4 weeks. Hbmass was determined weekly using the optimized carbon monoxide rebreathing method until 4 weeks after administration. v˙ O2 max and 3,000 m time trial performance were measured pre, post administration and at the end of the study.&lt;/p&gt; &lt;p&gt;Results: Relative to baseline, running performance significantly improved by ,6% after administration (10:3061:07 min:sec vs. 11:0861:15 min:sec, p,0.001) and remained significantly enhanced by ,3% 4 weeks after administration (10:4661:13 min:sec, p,0.001), while v˙ O2 max was also significantly increased post administration (60.765.8 mLNmin21Nkg21 vs. 56.066.2 mLNmin21Nkg21, p,0.001) and remained significantly increased 4 weeks after rHuEpo (58.065.6 mLNmin21Nkg21, p = 0.021). Hbmass was significantly increased at the end of administration compared to baseline (15.261.5 gNkg21 vs. 12.761.2 gNkg21, p,0.001). The rate of decrease in Hbmass toward baseline values post rHuEpo was similar to that of the increase during administration (20.53 gNkg21Nwk21, 95% confidence interval (CI) (20.68, 20.38) vs. 0.54 gNkg21Nwk21, CI (0.46, 0.63)) but Hbmass was still significantly elevated 4 weeks after administration compared to baseline (13.761.1 gNkg21, p&#60;0.001).&lt;/p&gt; &lt;p&gt;Conclusion: Running performance was improved following 4 weeks of rHuEpo and remained elevated 4 weeks after administration compared to baseline. These field performance effects coincided with rHuEpo-induced elevated v˙ O2 max and Hbmass.&lt;/p&gt

    Exploring the performance of resampling strategies for the class imbalance problem

    Get PDF
    The present paper studies the influence of two distinct factors on the performance of some resampling strategies for handling imbalanced data sets. In particular, we focus on the nature of the classifier used, along with the ratio between minority and majority classes. Experiments using eight different classifiers show that the most significant differences are for data sets with low or moderate imbalance: over-sampling clearly appears as better than under-sampling for local classifiers, whereas some under-sampling strategies outperform over-sampling when employing classifiers with global learning

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes

    Slab segmentation controls the interplate slip motion in the SW Hellenic subduction: New insight from the 2008Mw 6.8 Methoni interplate earthquake

    Get PDF
    We present an integrated approach of the seismic structure and activity along the offshore SW Hellenic subduction from combined observations of marine and land seismic stations. Our imaging of the slab top topography from teleseismic receiver function analysis at ocean bottom seismometers supports a trenchward continuation of the along-dip slab faults beneath the Peloponnesus. We further show that their morphostructural control accounts for the backstepping of the thrust contact of the Mediterranean Ridge accretionary wedge over the upper plate. Local seismic activity offshore SW Peloponnesus constrained by ocean bottom seismometer observations reveals a correlation with specific features of the forearc: the Matapan Troughs. We study the Mw6.8 14.02.2008 interplate earthquake offshore SW Peloponnesus and show that its nucleation, rupture zone, and aftershocks sequence are confined to one slab panel between two adjacent along-dip faults and are thus controlled by not only the offshore slab top segmentation but also the upper plate sea-bottom morphology
    corecore