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Abstract. The present paper studies the influence of two distinct factors on the
performance of some resampling strategies for handling imbalanced data sets. In
particular, we focus on the nature of the classifier used, along with the ratio be-
tween minority and majority classes. Experiments using eight different classifiers
show that the most significant differences are for data sets with low or moderate
imbalance: over-sampling clearly appears as better than under-sampling for local
classifiers, whereas some under-sampling strategies outperform over-sampling
when employing classifiers with global learning.

1 Introduction

Class imbalance constitutes one of the problems that has recently received most atten-
tion in research areas such as Machine Learning, Pattern Recognition and Data Mining.
A two-class data set is said to be imbalanced if one of the classes (the minority one) is
represented by a very small number of instances in comparison to the other (the major-
ity) class [1]. Besides, the minority class is the most important one from the point of
view of the learning task. It has been observed that class imbalance may cause a signif-
icant deterioration in the performance attainable by standard learners because these are
often biased towards the majority class [2]. This issue is particular important in real-
world applications where it is costly to misclassify examples of the minority class, such
as diagnosis of an infrequent diseases [3], detection of fraudulent telephone calls [4],
detection of oil spills in radar images [5], text categorization [6], and credit assess-
ment [7]. Because of examples of the minority and majority classes usually represent
the presence and absence of rare cases respectively, they are also known as positive and
negative examples.

Research on this topic can be categorized into three groups. One has primarily fo-
cused on the implementation of solutions for handling the imbalance both at the data
and algorithmic levels. Another group has addressed the problem of measuring the clas-
sifier performance in imbalanced domains. The third consists of analyzing the relation-
ship between class imbalance and other data complexity characteristics. From these
three general topics in class imbalance, data level methods are the most investigated.
These methods consist of balancing the original data set, either by over-sampling the
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minority class [8–11] and/or by under-sampling the majority class [12–14], until the
problem classes are approximately equally represented.

Conclusions about what is the best data level solution for the class imbalance prob-
lem are divergent. In this sense, Hulse et al. [15] suggest that the utility of the resam-
pling methods depends on a number of factors, including the ratio between positive and
negative examples, other characteristics of data, and the nature of the classifier.

In the present work, we study the influence of the imbalance ratio (i.e., ratio between
minority and majority classes) and the nature of the classifier used on the effectiveness
of some popular resampling techniques for handling the class imbalance problem. To
this end, we will carry out experiments over real databases with two different levels of
imbalance, employing eight classifiers and four performance measures.

The rest of the paper is organized as follows. Section 2 provides some performance
measures especially useful for class imbalance problems. Section 3 reviews several
well-known resampling strategies. Next, in Sect. 4 the experimental set-up is described.
Section 5 reports the results and discusses the most important findings. Finally, Sect. 6
concludes the present study and outlines possible directions for future research.

2 Performance Evaluation in Class Imbalance Problems

Typical metrics for measuring the performance of learning systems are classification
accuracy and error rates, which can be easily derived from a 2 × 2 confusion matrix
as that given in Table 1 (for a two-class problem). These measures can be computed as
Acc = (TP +TN)/(TP +FN +TN +FP ) and Err = (FP +FN)/(TP +FN +
TN + FP ).

Table 1. Confusion matrix for a two-class problem

Predicted positive Predicted negative

Actual positive True Positive (TP) False Negative (FN)
Actual negative False Positive (FP) True Negative (TN)

However, empirical evidence shows that most of these commonly used measures
are biased towards the majority class. Shortcomings of these evaluators have motivated
the search for alternative measures, such as the geometric mean of class accuracies [10]
and the area under the ROC curve (AUC) [16].

Given the true positive rate, TPrate = TP/(TP + FN), and the true negative
rate, TNrate = TN/(TN + FP ), the geometric mean of TPrate and TNrate is
computed as

Gm =
√
TPrate · TNrate (1)



This measure can be seen as a sort of correlation between both rates, because a high
value occurs when they both are also high, while a low value is related to at least one
low rate.

More recently, Garcia et al. proposed a new measure called index of balanced accu-
racy [17], which is computed as

IBA = (1 + 0.1 · (TPrate− TNrate)) · TPrate · TNrate (2)

The IBA metric quantifies a certain trade-off between an unbiased measure of over-
all accuracy and an index of how balanced are the two class accuracies. Unlike most
performance metrics, the IBA function does not take care of the overall accuracy only,
but also intends to favor classifiers with better results on the positive class (generally,
the most important class).

3 Resampling

Data level methods for balancing the classes consists of resampling the original data
set, either by over-sampling the minority class or by under-sampling the majority class,
until the classes are approximately equally represented. Both strategies can be applied
in any learning system, since they act as a preprocessing phase, allowing the learning
system to receive the training instances as if they belonged to a well-balanced data set.
Thus, any bias of the system towards the majority class due to the different proportion
of examples per class would be expected to be suppressed.

However, resampling methods have shown important drawbacks. Under-sampling
may throw out potentially useful data, while over-sampling artificially increases the
size of the data set and consequently, worsens the computational burden of the learning
algorithm.

The simplest method to increase the size of the minority class corresponds to ran-
dom over-sampling, that is, a non-heuristic method that balances the class distribution
through the random replication of positive examples. Nevertheless, since this method
replicates existing examples in the minority class, overfitting is more likely to occur.
Chawla et al. [18] proposed an over-sampling technique that generates new synthetic
minority instances by interpolating between several positive examples that lie close
together. This method, called SMOTE, allows the classifier to build larger decision re-
gions that contain nearby instances from the minority class. From the original SMOTE
algorithm, several modifications have been proposed in the literature. For example,
Garcı́a et al. [19] developed three alternatives based upon the concept of surrounding
neighborhood with the aim of taking into account both proximity and spatial distribu-
tion of the instances.

Random under-sampling [2, 20] aims at balancing the data set through the random
removal of negative examples. Despite its simplicity, it has empirically been shown to
be one of the most effective resampling methods. Unlike the random approach, many
other proposals are based on a more intelligent selection of the negative examples to
eliminate. For example, Kubat and Matwin [10] proposed the one-sided selection tech-
nique, which selectively removes only those negative instances that are redundant or
that border the minority class examples (they assume that these bordering cases are



noise). The border examples were detected using the concept of Tomek links [21]. On
the other hand, Barandela et al. [8] introduced a method that eliminates noisy instances
of the majority class by means of Wilson’s editing [22], as well as redundant examples
through the modified selective subset condensing algorithm [23].

4 Experiments

The experiments here carried out are directed to empirically evaluate several resampling
strategies, pursuing to determine the influence of the imbalance ratio and the nature of
classifier on the performance of over-sampling and under-sampling.

Table 2. Data sets used in the experiments

Data Set Positive Examples Negative Examples Classes Majority Class Source

Breast 81 196 2 1 UCI1

Ecoli 35 301 8 1,2,3,5,6,7,8 UCI
German 300 700 2 1 UCI

Glass 17 197 9 1,2,4,5,6,7,8,9 UCI
Haberman 81 225 2 1 UCI

Laryngeal2 53 639 2 1 Library2

Lettera 789 19211 26 2, . . . , 26 UCI
Phoneme 1586 3818 2 1 UCI
Optidigts 554 5066 10 1,2,3,4,5,6,7,8,10 UCI
Pendigits 1055 9937 10 1,2,3,4,5,7,8,9,10 UCI

Pima 268 500 2 1 UCI
Satimage 626 5809 7 1,2,3,5,6,7 UCI

Scrapie 531 2582 2 1 Library
Segmentation 330 1980 6 1,2,3,4,6 UCI

Spambase 1813 2788 2 1 UCI
Vehicle 212 634 4 2,3,4 UCI

Yeast 429 1055 10 1,3,4,5,6,7,8,9,10 UCI

1UCI Machine Learning Database Repository http://archive.ics.uci.edu/ml/
2Library http://www.vision.uji.es/˜sanchez/Databases/

Experiments were conducted as follows:

Data sets: Seventeen real data sets (summary of whom is given in Table 2) were em-
ployed in the experiment. All data sets were transformed into two-class problems
by keeping one original class and joining the objects of the remaining classes. The
fifth column in Table 2 indicates the original classes that have been joined to shape
the majority class. For example, in Vehicle database the objects of classes 2, 3, and
4 were combined to form a unique majority class and the original class 1 was left
as the minority class.



Partitions: For each database, a 10-fold cross-validation was repeated 5 times.
Resampling strategies: random under-sampling (RUS), one-sided selection (OSS),

Wilson’s editing over the negative examples (WE−), the combination of this with
the modified selective subset condensing over the negative instances (WE−+MSS−),
SMOTE, and the Gabriel-graph-based SMOTE (gg-SMOTE) were employed.

Classifiers: the nearest neighbor (1, 7, 13-NN) rule, a multi-layer perceptron (MLP), a
support vector classifier (SVC), the naı̈ve Bayes classifier (NBC), a decision tree
(J48), and a radial basis function network (RBF) were used, all of them taken from
the Weka toolkit [24]. In order to run the NBC on the data sets here considered, the
numeric attributes were modeled by a normal distribution.

Performance metrics: TPrate, TNrate, IBA and the geometric mean (Gm) were cal-
culated to measure the classification performance.

Classifiers were applied to each original training set and also to sets that were pre-
processed by the different resampling strategies. Results obtained in terms of the four
performance metrics were evaluated by a paired t−test between each pair of methods,
for each data set. Based on these values, we computed an index of performance, which
is calculated as the difference between wins and losses, where wins is the total number
of times that a method A has been significantly better than another method and losses is
the total number of times that A has been significantly worse than another method. With
the aim of summarizing the values of this index of performance, we ranked the position
of the resampling algorithms: as there are 7 competing methods, the ranks were from 1
(best) to 7 (worst).

5 Results

Since we are interested in analyzing the performance of the resampling strategies with
respect to the degree of imbalance, we computed an imbalance ratio as

IR =
n+

n− (3)

where n+ and n− denote the number of positive and negative examples in the data set,
respectively.

From the imbalance ratio IR, we divided the data sets into two categories. A first
group consists of the databases that can be deemed as strongly imbalanced (IR ≤ 0.27):
Ecoli, Glass, Laryngeal2, Lettera, Optdigits, Pendigits, Satimage, Scrapie, and Seg-
mentation. In the second group, we find the databases with a low/moderate imbalance
(IR > 0.27): Breast, German, Haberman, Phoneme, Pima, Spambase, Vehicle, and
Yeast.

5.1 Results on Data Sets with Severe Imbalance

Regarding to the data sets with a severe imbalance, several interesting conclusions can
be drawn from performance rankings plotted in Fig. 1. First, one can observe that all
the resampling techniques improve the accuracy on the minority class (TPrate), but



entailing a certain reduction of the TNrate (see Fig. 1(a) and 1(b)). However, it is worth
noting that the deterioration of the TNrate produced by over-sampling is much less
significant than that of under-sampling. This is due to the large number of negative
examples removed by the under-sampling algorithms.
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Fig. 1. Rankings for the strongly imbalanced data sets when evaluated with (a) TPrate, (b) TNrate,
(c) IBA and, (d) Gm

When employing the global performance metrics, that is, IBA (Fig. 1(c)) and Gm
(Fig. 1(d)), the over-sampling techniques are significantly better than the under-sampling
algorithms, except for the NBC and J48 classifiers.

It is also interesting to remark that the random under-sampling appears as one of the
best strategies in terms of IBA and Gm. Paradoxically, the ”intelligent” under-sampling
techniques generally show the worst ranks, independently of the classifier used; only
the WE− approach obtains good performance when applied with the NBC classifier.



5.2 Results on Data Sets with Low/Moderate Imbalance

Fig. 2 shows the performance rankings for the data sets with a low/moderate level of
imbalance. Like in the case of the strongly imbalanced databases, all the resampling
algorithms increase the TPrate (Fig. 2(a)) whereas produce a certain decrease in TNrate
(Fig. 2(b)). Once again, this effect is much more obvious for the under-sampling tech-
niques. In fact, the most evident case corresponds to the WE−+MSS− strategy, which
obtains the best rank for the TPrate and the worst one for the TNrate. A more detailed
analysis of the results produced by this technique reveals that the classes have inter-
changed their respective ”roles”, thus the majority class has now become the minority
one and vice versa.
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Fig. 2. Rankings for data sets with low/moderate imbalance when evaluated with (a) TPrate, (b)
TNrate, (c) IBA and, (d) Gm

When focused on IBA (Fig. 2(c)) and Gm (Fig. 2(d)) measures, one can observe
two different situations depending on the nature of the classifier. For local classifiers
such as k-NN, over-sampling is consistently better than under-sampling; in this case,



gg-SMOTE stands out from the remaining strategies. Nevertheless, for classifiers with
global learning, it seems that random and WE− under-sampling algorithms obtain good
performance.

6 Conclusions and Further Extensions

In this paper, we have studied the effect of the classifier used and the degree of im-
balance on the performance of different resampling techniques. The analysis has been
based upon a number of experiments over 17 real databases with different levels of
imbalance, using 8 distinct classifiers.

Experiments suggest that in fact these two factors have strong influence on the effec-
tiveness of the resampling strategies. More specifically, the most significant differences
are for data sets with low or moderate imbalance: over-sampling clearly appears as bet-
ter than under-sampling for local classifiers, whereas some under-sampling strategies
outperform over-sampling when employing classifiers with global learning.

The present work has revealed some interesting research avenues with regards to
the resampling strategies for imbalanced data sets, such as: (i) The analysis of the data
sets by means of data complexity (or problem difficulty) measures, thus obtaining a bet-
ter description of data and allowing a more accurate application of specific techniques
to tackle the class imbalance problem; (ii) The use of a larger number of resampling
strategies to draw more exhaustive, precise conclusions; (iii) The application of several
resampling algorithms to real-world imbalanced problems; and (iv) To extend this study
to cost-sensitive learning.
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