220 research outputs found

    Comparative study of a new quantitative real-time PCR targeting the xylulose-5-phosphate/fructose-6-phosphate phosphoketolase bifidobacterial gene (xfp) in faecal samples with two fluorescence in situ hybridization methods

    No full text
    The definitive version is available at ww3.interscience.wiley.comInternational audienceAims: To detect and enumerate bifidobacteria in faeces with a new quantitative multiplex real-time PCR (qPCR) method and to compare the results obtained with fluorescence in situ hybridization (FISH) methods. Methods and Results: A multiplex qPCR assay was developed, which enabled the enumeration of Bifidobacterium spp. by targeting the bifidobacterial xylulose- 5-phosphate ⁄ fructose-6-phosphate phosphoketolase gene (xfp) and total bacteria using universal Eub-primers targeting 16S rRNA gene from the domain bacteria. The qPCR assay showed high sensitivity and specificity and a low detection limit of about 2.5 x 10³ bifidobacterial cells per gram of faeces. The qPCR results were compared with FISH combined with microscopy or flow cytometry (FCM). No statistical differences among bifidobacterial counts averages measured in adult faeces with the three methods were observed. Total bacterial count averages were higher with the FISH method coupled with microscopic analyses compared to FISH with FCM, whereas total cell numbers estimated by qPCR were intermediate between the two FISH methods. Conclusions: The new qPCR assay was shown to be sensitive, rapid and accurate for enumerating bifidobacteria in faeces. Significance and Impact of the Study: This method is a valuable alternative for other molecular methods for detecting faecal bifidobacteria, especially when their counts are below the detection limit of the FISH methods

    Reciprocal Interactions of Pit1 and GATA2 Mediate Signaling Gradient–Induced Determination of Pituitary Cell Types

    Get PDF
    AbstractThe mechanisms by which transient gradients of signaling molecules lead to emergence of specific cell types remain a central question in mammalian organogenesis. Here, we demonstrate that the appearance of four ventral pituitary cell types is mediated via the reciprocal interactions of two transcription factors, Pit1 and GATA2, which are epistatic to the remainder of the cell type–specific transcription programs and serve as the molecular memory of the transient signaling events. Unexpectedly, this program includes a DNA binding–independent function of Pit1, suppressing the ventral GATA2-dependent gonadotrope program by inhibiting GATA2 binding to gonadotrope- but not thyrotrope-specific genes, indicating that both DNA binding–dependent and –independent actions of abundant determining factors contribute to generate distinct cell phenotypes

    Babes, bones, and isotopes: a stable isotope investigation on non-adults from Aventicum, Roman Switzerland (1st-3rd c. CE)

    Get PDF
    The study of infant feeding practices in archaeological populations can aid in the understanding of cultural attitudes towards dietary choices and how specific circumstances experienced by mothers and their offspring influence childhood health and survivorship. Breastfeeding and weaning patterns have received increased interest in Roman bioarchaeology, especially through the application of stable isotopic investigation of nitrogen (δ15N) and carbon (δ13C) values. This study presents the stable isotopic results of the first Roman bone sample analyzed from Switzerland (30 non-adults and 9 females), allowing us an unprecedented insight into health and diet at the site of Aventicum/Avenches, the capital city of the territory of Helvetii in Roman times (1st-3rd c. AD). The fact that the majority of the non-adult samples subject to stable isotope analysis were perinates, highlights the complex relationship between their δ15N and δ13C values and those of adult females, as different factors, including variation of fetal and maternal stable isotope values, the possible effects of intrauterine growth, as well as maternal/fetal disease and/or nutritional stress (e.g. nutritional deficiencies such as scurvy, parasitic infections, such as malaria), could have influenced the observed elevated δ15N values

    How to Build Transcriptional Network Models of Mammalian Pattern Formation

    Get PDF
    Genetic regulatory networks of sequence specific transcription factors underlie pattern formation in multicellular organisms. Deciphering and representing the mammalian networks is a central problem in development, neurobiology, and regenerative medicine. Transcriptional networks specify intermingled embryonic cell populations during pattern formation in the vertebrate neural tube. Each embryonic population gives rise to a distinct type of adult neuron. The homeodomain transcription factor Lbx1 is expressed in five such populations and loss of Lbx1 leads to distinct respecifications in each of the five populations. allele, respectively. Microarrays were used to show that expression levels of 8% of all transcription factor genes were altered in the respecified pool. These transcription factor genes constitute 20–30% of the active nodes of the transcriptional network that governs neural tube patterning. Half of the 141 regulated nodes were located in the top 150 clusters of ultraconserved non-coding regions. Generally, Lbx1 repressed genes that have expression patterns outside of the Lbx1-expressing domain and activated genes that have expression patterns inside the Lbx1-expressing domain.nalysis, and think that it will be generally useful in discovering and assigning network interactions to specific populations. We discuss how ANCEA, coupled with population partitioning analysis, can greatly facilitate the systematic dissection of transcriptional networks that underlie mammalian patterning

    Segment-Specific Neuronal Subtype Specification by the Integration of Anteroposterior and Temporal Cues

    Get PDF
    To address the question of how neuronal diversity is achieved throughout the CNS, this study provides evidence of modulation of neural progenitor cell “output” along the body axis by integration of local anteroposterior and temporal cues

    Hoxb1 Controls Anteroposterior Identity of Vestibular Projection Neurons

    Get PDF
    The vestibular nuclear complex (VNC) consists of a collection of sensory relay nuclei that integrates and relays information essential for coordination of eye movements, balance, and posture. Spanning the majority of the hindbrain alar plate, the rhombomere (r) origin and projection pattern of the VNC have been characterized in descriptive works using neuroanatomical tracing. However, neither the molecular identity nor developmental regulation of individual nucleus of the VNC has been determined. To begin to address this issue, we found that Hoxb1 is required for the anterior-posterior (AP) identity of precursors that contribute to the lateral vestibular nucleus (LVN). Using a gene-targeted Hoxb1-GFP reporter in the mouse, we show that the LVN precursors originate exclusively from r4 and project to the spinal cord in the stereotypic pattern of the lateral vestibulospinal tract that provides input into spinal motoneurons driving extensor muscles of the limb. The r4-derived LVN precursors express the transcription factors Phox2a and Lbx1, and the glutamatergic marker Vglut2, which together defines them as dB2 neurons. Loss of Hoxb1 function does not alter the glutamatergic phenotype of dB2 neurons, but alters their stereotyped spinal cord projection. Moreover, at the expense of Phox2a, the glutamatergic determinants Lmx1b and Tlx3 were ectopically expressed by dB2 neurons. Our study suggests that the Hox genes determine the AP identity and diversity of vestibular precursors, including their output target, by coordinating the expression of neurotransmitter determinant and target selection properties along the AP axis

    Functional Neuromuscular Junctions Formed by Embryonic Stem Cell-Derived Motor Neurons

    Get PDF
    A key objective of stem cell biology is to create physiologically relevant cells suitable for modeling disease pathologies in vitro. Much progress towards this goal has been made in the area of motor neuron (MN) disease through the development of methods to direct spinal MN formation from both embryonic and induced pluripotent stem cells. Previous studies have characterized these neurons with respect to their molecular and intrinsic functional properties. However, the synaptic activity of stem cell-derived MNs remains less well defined. In this study, we report the development of low-density co-culture conditions that encourage the formation of active neuromuscular synapses between stem cell-derived MNs and muscle cells in vitro. Fluorescence microscopy reveals the expression of numerous synaptic proteins at these contacts, while dual patch clamp recording detects both spontaneous and multi-quantal evoked synaptic responses similar to those observed in vivo. Together, these findings demonstrate that stem cell-derived MNs innervate muscle cells in a functionally relevant manner. This dual recording approach further offers a sensitive and quantitative assay platform to probe disorders of synaptic dysfunction associated with MN disease

    Stem cells of ependymoma

    Get PDF
    Ependymomas are tumours that arise throughout the central nervous system. Little is known regarding the aberrant cellular and molecular processes that generate these tumours. This lack of knowledge has hampered efforts to reduce the significant mortality and morbidity that are associated with ependymoma. Here, we review recent data that suggest that radial glia are cells of origin of ependymoma, and discuss the processes that might transform these neural progenitors into ependymoma cancer stem cells

    MiR-10 Represses HoxB1a and HoxB3a in Zebrafish

    Get PDF
    BACKGROUND: The Hox genes are involved in patterning the anterior-posterior axis. In addition to the protein coding Hox genes, the miR-10, miR-196 and miR-615 families of microRNA genes are conserved within the vertebrate Hox clusters. The members of the miR-10 family are located at positions associated with Hox-4 paralogues. No function is yet known for this microRNA family but the genomic positions of its members suggest a role in anterior-posterior patterning. METHODOLOGY/PRINCIPAL FINDINGS: Using sensor constructs, overexpression and morpholino knockdown, we show in Zebrafish that miR-10 targets HoxB1a and HoxB3a and synergizes with HoxB4 in the repression of these target genes. Overexpression of miR-10 also induces specific phenotypes related to the loss of function of these targets. HoxB1a and HoxB3a have a dominant hindbrain expression domain anterior to that of miR-10 but overlap in a weaker expression domain in the spinal cord. In this latter domain, miR-10 knockdown results in upregulation of the target genes. In the case of a HoxB3a splice variant that includes miR-10c within its primary transcript, we show that the microRNA acts in an autoregulatory fashion. CONCLUSIONS/SIGNIFICANCE: We find that miR-10 acts to repress HoxB1a and HoxB3a within the spinal cord and show that this repression works cooperatively with HoxB4. As with the previously described interactions between miR-196 and HoxA7 and Hox-8 paralogues, the target genes are located in close proximity to the microRNA. We present a model in which we postulate a link between the clustering of Hox genes and post-transcriptional gene regulation. We speculate that the high density of transcription units and enhancers within the Hox clusters places constraints on the precision of the transcriptional control that can be achieved within these clusters and requires the involvement of post-transcriptional gene silencing to define functional domains of genes appropriately

    Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity

    Get PDF
    Efficient transcriptional programming promises to open new frontiers in regenerative medicine. However, mechanisms by which programming factors transform cell fate are unknown, preventing more rational selection of factors to generate desirable cell types. Three transcription factors, Ngn2, Isl1 and Lhx3, were sufficient to program rapidly and efficiently spinal motor neuron identity when expressed in differentiating mouse embryonic stem cells. Replacement of Lhx3 by Phox2a led to specification of cranial, rather than spinal, motor neurons. Chromatin immunoprecipitation–sequencing analysis of Isl1, Lhx3 and Phox2a binding sites revealed that the two cell fates were programmed by the recruitment of Isl1-Lhx3 and Isl1-Phox2a complexes to distinct genomic locations characterized by a unique grammar of homeodomain binding motifs. Our findings suggest that synergistic interactions among transcription factors determine the specificity of their recruitment to cell type–specific binding sites and illustrate how a single transcription factor can be repurposed to program different cell types.Project ALS FoundationNational Institutes of Health (U.S.) (Grant P01 NS055923
    corecore