67 research outputs found

    Iodido{4-phenyl-1-[1-(1,3-thia­zol-2-yl-κN)ethyl­idene]thio­semicarbazidato-κ2 N′,S}{4-phenyl-1-[1-(1,3-thia­zol-2-yl)ethyl­idene]thio­semicarbazide-κS}mercury(II)

    Get PDF
    In the title compound, [Hg(C12H11N4S2)I(C12H12N4S2)], the Hg atom is in a distorted square-pyramidal coordination, defined by the iodide ligand, by the S atom of the neutral ligand in the apical position, and by the N atom of the thia­zole ring, the thio­ureido N and the S atom of the deprotonated ligand. The deprotonated ligand intra­molecularly hydrogen bonds to the thia­zole ring N atom, while the deprotonated ligand forms an inter­molecular hydrogen bond to the thiol­ate S atom. The deprotonation of the tridentate ligand and its coordination to Hg via the S atom strikingly affects the C—S bond lengths. In the free ligand, the C—S bond distance is 1.685 (7) Å, whereas it is 1.749 (7) Å in the deprotonated ligand. Similarly, the Hg—S bond distance is slightly longer to the neutral ligand [2.6682 (18) Å] than to the deprotonated ligand [2.5202 (19) Å]. The Hg—I distance is 2.7505 (8) Å

    Chloridodiphen­yl{[1-(1,3-thia­zol-2-yl-κN)ethyl­idene]-4-phenyl­thio­semicarbazidato-κ2 N 1,S}tin(IV) methanol monosolvate

    Get PDF
    The title compound, [Sn(C6H5)2(C12H11N4S2)Cl]·CH4O, is formed during the reaction between 2-acetyl­thia­zole 4-phenyl­thio­semicarbazone (Hacthptsc) and diphenyl­tin(IV) dichloride in methanol. In the crystal structure, the Sn atom exhibits an octa­hedral geometry with the [N2S] anionic tridentate thio­semicarbazone ligand having chloride trans to the central N and the two phenyl groups trans to each other. The Sn—Cl distance is 2.5929 (6), Sn—S is 2.4896 (6) and Sn—N to the central N is 2.3220 (16) Å. The MeOH mol­ecules link the Sn complexes into one-dimensional chains via N—H⋯O and O—H⋯Cl hydrogen bonds

    Photodegradation of Selected PCBs in the Presence of Nano-TiO2 as Catalyst and H2O2 as an Oxidant

    Get PDF
    Photodegradation of five strategically selected PCBs was carried out in acetonitrile/water 80:20. Quantum chemical calculations reveal that PCBs without any chlorine on ortho-positions are closer to be planar, while PCBs with at least one chlorine atoms at the ortho-positions causes the two benzene rings to be nearly perpendicular. Light-induced degradation of planar PCBs is much slower than the perpendicular ones. The use of nano-TiO2 speeds up the degradation of the planar PCBs, but slows down the degradation of the non-planar ones. The use of H2O2 speeds up the degradation of planar PCBs greatly (by >20 times), but has little effect on non-planar ones except 2,3,5,6-TCB. The relative photodegradation rate is: 2,2′,4,4′-TCB > 2,3,5,6-TCB > 2,6-DCB ≈ 3,3′,4,4′-TCB > 3,4′,5-TCB. The use of H2O2 in combination with sunlight irradiation could be an efficient and “green” technology for PCB remediation

    Electrospun fluorescent nanofibers for explosive detection

    Get PDF
    Development of an instant on-site visual detection method for 2,4,6 trinitrotoluene (TNT) has become a significant requirement of the hour towards a secured society and a greener environment. Despite momentous advances in the respective field, a portable and reliable method for quick and selective detection of TNT still poses a challenge to many reasons attributing to inappropriate usage in subordinate areas and untrained personnel. The recent effort on the fluorescent based detection represents as one of easy method in terms of fast response time and simple on/off detection. Therefore, this chapter provides a consolidation of information relating to recent advances in fluorescence based TNT detection.Further, the main focus will be towards advances in the nanofibers based TNT detection and their reason to improving thesensitivity. © Springer International Publishing Switzerland 2015

    Photodegradation of Selected PCBs in the Presence of Nano-TiO2 as Catalyst and H2O2 as an Oxidant

    No full text
    Photodegradation of five strategically selected PCBs was carried out in acetonitrile/water 80:20. Quantum chemical calculations reveal that PCBs without any chlorine on ortho-positions are closer to be planar, while PCBs with at least one chlorine atoms at the ortho-positions causes the two benzene rings to be nearly perpendicular. Light-induced degradation of planar PCBs is much slower than the perpendicular ones. The use of nano-TiO2 speeds up the degradation of the planar PCBs, but slows down the degradation of the non-planar ones. The use of H2O2 speeds up the degradation of planar PCBs greatly (by >20 times), but has little effect on non-planar ones except 2,3,5,6-TCB. The relative photodegradation rate is: 2,2’,4,4’-TCB > 2,3,5,6-TCB > 2,6-DCB ≈ 3,3’,4,4’-TCB > 3,4’,5-TCB. The use of H2O2 in combination with sunlight irradiation could be an efficient and “green” technology for PCB remediation
    corecore