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Introduction

Nanoparticle-ligand systems can be targeted to specific analytes
to effect a change in the properties of the nanoparticles. We will
examine two examples in which the electromagnetic properties
of the nanoparticles (arising from their small size) are altered by
analyte binding, and can be applied as a transducer in a chemical
sensing system for explosive analytes. The first property
reviewed is the surface plasmon resonance (SPR) band of col-
loidal gold nanoparticles (AuNPs), and the second, the fluores-
cence of colloidal semiconductors (quantum dots – QDs).

Sensors based on these nanoparticle properties have the po-
tential to detect picomolar or lower concentrations of explosive
analytes, and can operate for both solution phase and gas phase
detection [1–3]. In addition, measurement of the signal produced
by the nanoparticle transducer uses standard scientific instrumen-
tation, making it easier to build complete detection systems from
standard components - an important consideration [4].

Example 1 - gold nanoparticles

In AuNPs the free electrons of the metal surface interact
strongly with light causing large oscillations in the surface
electromagnetic field. The particles therefore absorb light
strongly at the particular resonant frequencies of these elec-
trons, giving rise to SPR bands.

One method to exploit the plasmons of AuNPs for sensing
is to use them in surface enhanced Raman spectroscopy
(SERS). A Raman spectrum is a powerful way to fingerprint
a molecule, using incident light to excite Raman active vibra-
tional modes (Fig. 1a), causing inelastic scattering of the pho-
tons, and giving rise to a unique spectrum that provides infor-
mation on molecular shape and connectivity. The spectrum
obtained from an unknown analyte can be compared to a
library of known spectra and used to identify a threat.
However, Raman scattering is very weak, and so detection
of low levels of analyte, enhancement is required.

If a molecule is bound (chemi- or physisorbed) to a metal
surface, incident light (usually a monochromated laser pulse)
excites the surface plasmons, inducing polarization in the
bound molecules, increasing the amount of inelastic scattered
light from the Raman vibrational modes (Fig. 1b). This leads
to a signal enhancement of up to E4, where E is the electric-
field magnitude. The intensity of the SERS effect is largely
attributed to the monolayer of molecules absorbed to the nano-
particles, and is highly dependent on the form (and hence
plasmonic field) of the nanoparticles [5–8]. This adsorption
onto the substrate also creates new vibrational selection rules,
and surface-complex formation can lead to altered electronic
properties of the absorbed molecule [9].

The best SERS enhancement is achieved by having strong
localized plasmons, that fall within the wavelength of the
Raman laser excitation. For this reason gold and silver are often
chosen, as their SPR bands are typically within 400–800 nm,
which is easy to access with a visible laser [10]. In addition they
are chemically inert and thus stable against air, and strong ox-
idizing or reducing agents. Other materials have been success-
fully applied as SERS substrates, such as other noble metals (Pt
and Pd) and even transitionmetals and semiconductors [11, 12].

Strong plasmon hotspots created in between individual par-
ticles can improve the SERS enhancement effect. This can be
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achieved through aggregation of the particles, either in solu-
tion by trapping at an interface or chemical aggregation with
linking molecules, or by solvent removal [13–15].

In recent years SERS on nanoparticulate colloids has been
heavily applied to the detection of illicit materials, such as
explosives [16, 17]. The technique has been shown to be ca-
pable of detecting a range of high explosives, with good de-
tection limits (into the nanomolar region or below), even with
raw colloidal solutions of Au and AgNPs, such as those ap-
plied by the group of Hernández-Rivera [18, 19]. By aggre-
gating AuNPs at an interface, Edel et al. created a regular
monolayer array, which showed enhanced sensitivity to a
range of compounds, including some explosives [20].

A more targeted approach has been taken by utilizing NPs
functionalized with cysteine to form Mesienheimer complexes
with nitroaromatics [21, 22]. Xu et al. demonstrated enhanced
detection of DNT by using cyclodextrin coated triangular
nanoprisms of gold [23]. SERS also extends beyond the
nitroaromatics, for example it has been shown that RDX can
be detected at concentrations as low as 0.15 mg/L in ground
water samples [24]. This illustrates a key benefit of SERS, that
it is label free, requiring no special binding groups to target
particular analytes, but that it can become more targeted with
designed substrates.

SERS is a very useful technique for detection of explosives as
it can can detect solution or vapor phase materials at very low
concentrations. The individual Raman fingerprint of each differ-
ent molecule makes specificity high, however in complex

mixtures, deconvolution can be a challenge [25]. A second prob-
lem is the dependence of the Raman signal on the SERS sub-
strate. Particular vibrational modes in the Raman spectrum can
be enhanced or suppressed depending on the binding mode of
the analyte, and if the substrate (e.g. AuNP concentration and
aggregation amount) is not identical in every instance then the
fingerprints may differ slightly, causing loss of specificity.
Therefore, a key requirement is the development of cheap, iden-
tical SERS substrates, that exhibit powerful enhancement, ensur-
ing strong and repeatable spectral fingerprints can be obtained on
each use.

Recently we reported a new method of designing such sub-
strates based on a new enhanced Raman technique – photoin-
duced enhanced Raman spectroscopy – PIERS. It was shown
that by combining semiconducting TiO2 substrates with plas-
monic AuNPs, and pre-irradiating the material, a PIERS sub-
strate was created that displayed an order of magnitude enhance-
ment over conventional SERS techniques [2]. We performed
sensing of DNT, TNT, RDX and PETN explosives in solution,
with high quality spectral finger prints obtained even at sub-
nanomolar concentrations (Fig. 2). In particular nanomolar con-
centrations of DNTand TNTwere detected both in solution and
in the vapor phase, demonstrating that this PIERS technique
might have interest for stand-off detection of explosives. We
also showed that via the pre-irradiation step the substrates could
be fully cleaned over several cycles, meaning the same substrate
can be used multiple times, unlike many commercial SERS
substrates on the market today.

We undertook a thorough investigation into the mechanism
of this enhancement and suggest that it arises from interaction
between the irradiated TiO2 and gold nanoparticles, causing
improved charge transfer and electromagnetic enhancement at
the surface of the substrate (Fig. 2). Further investigations into
the underlyingmechanism and optimization for field detection
of explosives, and other threats, are ongoing.

Example 2 - quantum dots

Quantum dots (QDs) are semiconducting nanoparticles which
are small enough to confine a generated hole-electron pair
(exciton) within all 3 spatial dimensions, leading to quantiza-
tion of the energy levels. This causes the electronic structure
of the material to sit between a classical semiconductor, and a
molecular material (Fig. 3a).

The result of this quantization of states is that the nano-
particles display sharp photon absorption and emission
bands, and the band gap is closely related to the size of
the nanoparticle. The fluorescence arises from photoexci-
tation of the nanoparticles, causing exciton formation.
Recombination of this exciton will then occur through
radiative (fluorescence) or non-radiative (trap-states, oxi-
dation, energy transfer) pathways. The fluorescence from
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Fig. 1 a Basic inelastic scattering modes that give rise to Raman spectra.
(i) Rayleigh scattering - elastic scattering that is discarded from the
spectrum. (ii) Stokes Raman scattering, where the change in wavelength
of the emitted photon gives the Raman signal. (iii) Anti-Stokes Raman
scattering - much weaker than the Stokes equivalent. b Electromagnetic
enhancement of Raman scattering for a physisorbed analyte on an AuNP
surface. Both incident laser light and outgoing Raman light are enhanced
by the particle plasmonic field. Adapted from Guerrini & Graham [9]
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QDs is easily tuned to the visible or near-IR region of the
spectrum, by choice of semiconductor material and parti-
cle size, making QDs useful fluorophores (Fig. 3b).

Introducing molecules around the surface of the QD will
affect the rate of recombination of the exciton, and may also
disrupt its recombination. In particular, the conduction band elec-
tron may be lost to a local species in a process termed photoin-
duced electron transfer (PET). In PET the loss of the excited
electron to the acceptor results in the prevention of recombina-
tion, and thus the loss of fluorescence. The more efficient this
process, the larger the fluorescence quenching of the system.

This electron transfer mechanism has been used extensive-
ly to transduce the presence of analytes in proximity to a QD,
and thus form the sensor element in a chemical sensor
[26–28]. The surface of the QD can be targeted to certain
analytes by the placement of receptors on the surface that
preferentially bind the analyte and bring it into close proximity
with the QD, facilitating the PET mechanism, and quenching
the observed fluorescence [29].

QDs, therefore, have many properties of interest to chem-
ical sensing - they exhibit high fluorescence quantum yields,
are resistant to photobleaching, and have broad absorption
giving rise to narrow emission bands. This means they lend
themselves well to a multiplexed or multichannel fluorophore
system, with a single excitation wavelength causing emission
from many different species of varying color. The surface of
the particles is easily modified with targeting ligands to allow
specific and sensitive fluorescence enhancement or quenching
on association with an analyte via a PET mechanism.
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Fig. 3 a Schematic of band structures of metals, semiconductors,
quantum dots (QD) and single molecules, showing the increase in band
gap (Eg) as confinement is increased. At the single molecule scale the
energy bands become completely discrete, and the QD sits between this
system and the band model of semiconductors. b Graphic illustrating the
change in QD band gap and photoluminescence emission wavelength
(colour) with increasing particle size
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Fig. 2 Illustration of (a) the proposed PIERSmechanism, (b) SEM of a PIERS substrate and (c,d) exemplar sensing results for DNTand RDX. Adapted
from Nature Communications [2] Copyright 2016 Nature Publishing Group

492 Forensic Sci Med Pathol (2017) 13:490–494



In the security domain, QDs have been used for approx-
imately 10 years as a fledgling sensor for explosives. Due
to explosives’ (particularly nitro/conventional explosives’)
electron deficient nature, they make excellent PET
quenchers [30]. Initially antibody targeting of explosives
was used, but this is complicated by the procedures to
obtain, purify and conjugate the antibodies [31, 32]. A
cheaper and simpler targeting approach has been the for-
mation of Meisenheimer complexes, using surface amines
to bind nitroaromatics, such as TNT or picric acid [33–38].
This system can be highly specific towards nitroaromatic
materials, but is very difficult to apply more widely to
other explosives (even DNT). A novel donor/acceptor sys-
tem for the sensing of explosives beyond TNT has been
pioneered by Willner et al. They have utilized both a redox
couple based on NAD+/NADH and a donor/acceptor
scheme, based on surface bound dopamine derivatives, to
sense a range of explosives, including RDX [39, 40].

To further this work we have recently exploited the attractive
optical properties of QDs to build an explosive sensing array of
quantum dots. By combiningmultiplexed fluorophores with var-
iable response do different explosives, with array statistics, it was
possible to ‘fingerprint’ 5 different explosives and identify them
at low concentration [1]. This has potential applications in waste-
water management and testing, as well as drinking water evalu-
ation in areas where explosives contamination is a health issue,
such as ordinance ranges and manufacturing sites, as well as for
safety management.

In this system, the surfaces of the QDs were modified with
a range of supramolecular functionalities to control their se-
lective interactions with different explosives, and DNT, TNT,
RDX, PETN and tetryl were successfully detected and

discriminated using the array of just three QDs. It was also
shown that the QDs in the array could operate in the format of
a paper-based test, in addition to the solution-based assay.
Limits of detection down to ppb levels were obtained, and
most importantly the array could read out information on what
type of explosive was present, rather than just if there was a
particular single explosive or not (Fig. 4).

The future?

Nanomaterials have shown great promise in the explo-
sives detection field and it is likely that future commercial
developments in this area will make some use of these
types of matter. Two key areas of interest are the Raman
enhancing properties of plasmonic gold nanoparticles, and
the fluorescent nanomaterials such as quantum dots that
can be used in complex photonic systems for sensing dif-
ferent types of explosive at low levels. Each of these has
shown their worth in the laboratory and efforts must now
focus on more rigorous device design and field testing to
move towards end-user applications.
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