209 research outputs found

    The Rotation Of The Deep Solar Layers

    Full text link
    From the analysis of low-order GOLF+MDI sectoral modes and LOWL data (l > 3), we derive the solar radial rotation profile assuming no latitudinal dependance in the solar core. These low-order acoustic modes contain the most statistically significant information about rotation of the deepest solar layers and should be least influenced by internal variability associated with the solar dynamo. After correction of the sectoral splittings for their contamination by the rotation of the higher latitudes, we obtain a flat rotation profile down to 0.2 solar radius.Comment: accepted in ApJ Letters 5 pages, 2 figure

    Influence of Low-Degree High-Order p-Mode Splittings on the Solar Rotation Profile

    Get PDF
    The solar rotation profile is well constrained down to about 0.25 R thanks to the study of acoustic modes. Since the radius of the inner turning point of a resonant acoustic mode is inversely proportional to the ratio of its frequency to its degree, only the low-degree p modes reach the core. The higher the order of these modes, the deeper they penetrate into the Sun and thus they carry more diagnostic information on the inner regions. Unfortunately, the estimates of frequency splittings at high frequency from Sun-as-a-star measurements have higher observational errors due to mode blending, resulting in weaker constraints on the rotation profile in the inner core. Therefore inversions for the solar internal rotation use only modes below 2.4 mHz for l < 4. In the work presented here, we used an 11.5 year-long time series to compute the rotational frequency splittings for modes l < 4 using velocities measured with the GOLF instrument. We carried out a theoretical study of the influence of the low-degree modes in the region 2 to 3.5 mHz on the inferred rotation profile as a function of their error bars.Comment: Accepted for publication in Solar Physics. 17 Pages, 9 figure

    Optimum structure for a uniform load over multiple spans

    Get PDF
    This paper presents a new half-plane Michell structure that transmits a uniformly distributed load of infinite horizontal extent to a series of equally-spaced pinned supports. Full kinematic description of the structure is obtained for the case when the maximum allowable tensile stress is greater than or equal to the allowable compressive stress. Although formal proof of optimality of the solution presented is not yet available, the proposed analytical solution is supported by substantial numerical evidence, involving the solution of problems with in excess of 10 billion potential members. Furthermore, numerical solutions for various combinations of unequal allowable stresses suggest the existence of a family of related, simple, and practically relevant structures, which range in form from a Hemp-type arch with vertical hangers to a structure which strongly resembles a cable-stayed bridge

    Thin film composite membranes with regulated crossover and water migration for long-life aqueous redox flow batteries.

    Get PDF
    Redox flow batteries (RFBs) are promising for large-scale long-duration energy storage owing to their inherent safety, decoupled power and energy, high efficiency, and longevity. Membranes constitute an important component that affects mass transport processes in RFBs, including ion transport, redox-species crossover, and the net volumetric transfer of supporting electrolytes. Hydrophilic microporous polymers, such as polymers of intrinsic microporosity (PIM), are demonstrated as next-generation ion-selective membranes in RFBs. However, the crossover of redox species and water migration through membranes are remaining challenges for battery longevity. Here, a facile strategy is reported for regulating mass transport and enhancing battery cycling stability by employing thin film composite (TFC) membranes prepared from a PIM polymer with optimized selective-layer thickness. Integration of these PIM-based TFC membranes with a variety of redox chemistries allows for the screening of suitable RFB systems that display high compatibility between membrane and redox couples, affording long-life operation with minimal capacity fade. Thickness optimization of TFC membranes further improves cycling performance and significantly restricts water transfer in selected RFB systems

    Thin Film Composite Membranes with Regulated Crossover and Water Migration for Long-Life Aqueous Redox Flow Batteries

    Get PDF
    Redox flow batteries (RFBs) are promising for large-scale long-duration energy storage owing to their inherent safety, decoupled power and energy, high efficiency, and longevity. Membranes constitute an important component that affects mass transport processes in RFBs, including ion transport, redox-species crossover, and the net volumetric transfer of supporting electrolytes. Hydrophilic microporous polymers, such as polymers of intrinsic microporosity (PIM), are demonstrated as next-generation ion-selective membranes in RFBs. However, the crossover of redox species and water migration through membranes are remaining challenges for battery longevity. Here, a facile strategy is reported for regulating mass transport and enhancing battery cycling stability by employing thin film composite (TFC) membranes prepared from a PIM polymer with optimized selective-layer thickness. Integration of these PIM-based TFC membranes with a variety of redox chemistries allows for the screening of suitable RFB systems that display high compatibility between membrane and redox couples, affording long-life operation with minimal capacity fade. Thickness optimization of TFC membranes further improves cycling performance and significantly restricts water transfer in selected RFB systems

    Chemical Abundances and Rotation Velocities of Blue Horizontal-Branch Stars in Six Globular Clusters

    Full text link
    High-resolution spectroscopic measurements of blue horizontal-branch stars in six metal-poor globular clusters -- M3, M13, M15, M68, M92, and NGC 288 -- reveal remarkable variations in photospheric composition and rotation velocity as a function of a star's position along the horizontal branch. For the cooler stars (Teff < 11200 K), the derived abundances are in good agreement with the canonical cluster metallicities, and we find a wide range of v sin i rotation velocities, some as high as 40 km/s. In the hotter stars, however, most metal species are strongly enhanced, by as much as 3 dex, relative to the expected cluster metallicity, while helium is depleted by 2 dex or more. In addition, the hot stars all rotate slowly, with v sin i < 8 km/s. The anomalous abundances appear to be due to atomic diffusion mechanisms -- gravitational settling of helium, and radiative levitation of metals -- in the non-convective atmospheres of these hot stars. We discuss the influence of these photospheric metal enhancements on the stars' photometric properties, and explore possible explanations for the observed distribution of rotation velocities.Comment: 77 pages, 27 figures, accepted for November 2003 publication in ApJ

    Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the michelson doppler imager

    Get PDF
    The splitting of the frequencies of the global resonant acoustic modes of the Sun by large-scale flows and rotation permits study of the variation of angular velocity &#937; with both radius and latitude within the turbulent convection zone and the deeper radiative interior. The nearly uninterrupted Doppler imaging observations, provided by the Solar Oscillations Investigation (SOI) using the Michelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO) spacecraft positioned at the L1 Lagrangian point in continuous sunlight, yield oscillation power spectra with very high signal-to-noise ratios that allow frequency splittings to be determined with exceptional accuracy. This paper reports on joint helioseismic analyses of solar rotation in the convection zone and in the outer part of the radiative core. Inversions have been obtained for a medium-l mode set (involving modes of angular degree l extending to about 250) obtained from the first 144 day interval of SOI-MDI observations in 1996. Drawing inferences about the solar internal rotation from the splitting data is a subtle process. By applying more than one inversion technique to the data, we get some indication of what are the more robust and less robust features of our inversion solutions. Here we have used seven different inversion methods. To test the reliability and sensitivity of these methods, we have performed a set of controlled experiments utilizing artificial data. This gives us some confidence in the inferences we can draw from the real solar data. The inversions of SOI-MDI data have confirmed that the decrease of &#937; with latitude seen at the surface extends with little radial variation through much of the convection zone, at the base of which is an adjustment layer, called the tachocline, leading to nearly uniform rotation deeper in the radiative interior. A prominent rotational shearing layer in which &#937; increases just below the surface is discernible at low to mid latitudes. Using the new data, we have also been able to study the solar rotation closer to the poles than has been achieved in previous investigations. The data have revealed that the angular velocity is distinctly lower at high latitudes than the values previously extrapolated from measurements at lower latitudes based on surface Doppler observations and helioseismology. Furthermore, we have found some evidence near latitudes of 75&#176; of a submerged polar jet which is rotating more rapidly than its immediate surroundings. Superposed on the relatively smooth latitudinal variation in &#937; are alternating zonal bands of slightly faster and slower rotation, each extending some 10&#176; to 15&#176; in latitude. These relatively weak banded flows have been followed by inversion to a depth of about 5% of the solar radius and appear to coincide with the evolving pattern of "torsional oscillations" reported from earlier surface Doppler studies

    Genetic and antigenic characterization of complete genomes of Type 1 Porcine Reproductive and Respiratory Syndrome viruses (PRRSV) isolated in Denmark over a period of 10 years

    Get PDF
    AbstractPorcine Reproductive and Respiratory Syndrome (PRRS) caused by the PRRS virus (PRRSV) is considered one of the most devastating swine diseases worldwide. PRRS viruses are divided into two major genotypes, Type 1 and Type 2, with pronounced diversity between and within the genotypes. In Denmark more than 50% of the herds are infected with Type 1 and/or Type 2 PRRSV. The main objective of this study was to examine the genetic diversity and drift of Type 1 viruses in a population with limited introduction of new animals and semen. A total of 43 ORF5 and 42 ORF7 nucleotide sequences were obtained from viruses collected from 2003 to February 2013. Phylogenetic analysis of ORF5 nucleotide sequences showed that the Danish isolates formed two major clusters within the subtype 1. The nucleotide identity to the subtype 1 protogenotype Lelystad virus (LV) spanned 84.9–98.8% for ORF5 and 90.7–100% for ORF7. Among the Danish viruses the pairwise nucleotide identities in ORF5 and ORF7 were 81.2–100% and 88.9–100%, respectively. Sequencing of the complete genomes, including the 5â€Č- and 3â€Č-end nucleotides, of 8 Danish PRRSV Type 1 showed that the genome lengths differed from 14,876 to 15,098 nucleotides and the pairwise nucleotide identity among the Danish viruses was 86.5–97.3% and the identity to LV was 88.7–97.9%. The study strongly indicated that there have been at least two independent introductions of Type 1 PRRSV in Denmark and analysis of the full genomes revealed a significant drift in several regions of the virus

    The magnetism of the solar interior for a complete MHD solar vision

    Full text link
    The solar magnetism is no more considered as a purely superficial phenomenon. The SoHO community has shown that the length of the solar cycle depends on the transition region between radiation and convection. Nevertheless, the internal solar (stellar) magnetism stays poorly known. Starting in 2008, the American instrument HMI/SDO and the European microsatellite PICARD will enrich our view of the Sun-Earth relationship. Thus obtaining a complete MHD solar picture is a clear objective for the next decades and it requires complementary observations of the dynamics of the radiative zone. For that ambitious goal, space prototypes are being developed to improve gravity mode detection. The Sun is unique to progress on the topology of deep internal magnetic fields and to understand the complex mechanisms which provoke photospheric and coronal magnetic changes and possible longer cycles important for human life. We propose the following roadmap in Europe to contribute to this "impressive" revolution in Astronomy and in our Sun-Earth relationship: SoHO (1995-2007), PICARD (2008-2010), DynaMICS (2009-2017) in parallel to SDO (2008-2017) then a world-class mission located at the L1 orbit or above the solar poles.Comment: 10 pages, 8 figures, will appear in the proceedings of 2005 ESLAB symposium 19-21 April 200
    • 

    corecore