491 research outputs found

    Evolved polygenic herbicide resistance in Lolium rigidum by low-dose herbicide selection within standing genetic variation

    Get PDF
    The interaction between environment and genetic traits under selection is the basis of evolution. In this study, we have investigated the genetic basis of herbicide resistance in a highly characterized initially herbicide-susceptible Lolium rigidum population recurrently selected with low (below recommended label) doses of the herbicide diclofop-methyl. We report the variability in herbicide resistance levels observed in F1 families and the segregation of resistance observed in F2 and back-cross (BC) families. The selected herbicide resistance phenotypic trait(s) appear to be under complex polygenic control. The estimation of the effective minimum number of genes (NE), depending on the herbicide dose used, reveals at least three resistance genes had been enriched. A joint scaling test indicates that an additive-dominance model best explains gene interactions in parental, F1, F2 and BC families. The Mendelian study of six F2 and two BC segregating families confirmed involvement of more than one resistance gene. Cross-pollinated L. rigidum under selection at low herbicide dose can rapidly evolve polygenic broad-spectrum herbicide resistance by quantitative accumulation of additive genes of small effect. This can be minimized by using herbicides at the recommended dose which causes high mortality acting outside the normal range of phenotypic variation for herbicide susceptibility

    Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability

    Get PDF
    In order to enhance the efficiency of anaerobic digestion, the effects of ultrasounds, ozonation and thermal pre-treatment have been studied on waste activated sludge. The feature of this study was to carry out the comparison of the three pre-treatments in the same conditions and on the same sludge sample. Each treatment was tested in two conditions close to optimum conditions to maximise batch anaerobic sludge biodegradability. All treatments led to chemical oxygen demand and matter solubilisation and had little influence on mineral matter. In terms of solubilisation thermal pre-treatment was better than sonication or ozonation. But, in terms of batch anaerobic biodegradability, best results were obtained with ultrasounds with an energy of 6250 or 9350 kJ/kg TS and a thermal treatment at 170 or 190°C. Moreover, treatments had effects on physicochemical characteristics of sludge samples: apparent viscosity decreased after all treatments but the reduction was more important with thermal treatment. Median diameter of sludge flocs were reduced after sonication, increased after thermal treatment and did not change after ozonation. Finally, capillary suction time (CST) increased after ozonation, increased highly after sonication and was reduced after thermal treatmen

    Biogenesis of protein bodies during vicilin accumulation in Medicago truncatula immature seeds

    Get PDF
    BACKGROUND: Grain legumes play a worldwide role as a source of plant proteins for feed and food. In the model legume Medicago truncatula, the organisation of protein storage vacuoles (PSV) in maturing seeds remains unknown. FINDINGS: The sub-cellular events accompanying the accumulation of vicilin (globulin7S) were analysed during seed mid-maturation. Immuno-detection of vicilin in light microscopy, allowed a semi-quantitative assessment of the protein body complement. The identified populations of vicilin-containing protein bodies are distinguished by their number and size which allowed to propose a model of their biogenesis. Two distributions were detected, enabling a separation of their processing at early and mid maturation stages. The largest protein bodies, at 16 and 20 days after pollination (DAP), were formed by the fusion of small bodies. They have probably attained their final size and correspond to mature vicilin aggregations. Electron microscopic observations revealed the association of the dense protein bodies with rough endoplasmic reticulum. The presence of a ribosome layer surrounding protein bodies, would support an endoplasmic reticulum–vacuole trafficking pathway. CONCLUSIONS: The stastistic analysis may be useful for screening mutations of candidate genes governing protein content. The definitive evidence for an ER-storage vacuole pathway corresponds to a challenge, for the storage of post-translationally unstable proteins. It was proposed for the accumulation of one class of storage protein, the vicilins. This alternative pathway is a matter of controversy in dicotyledonous seeds

    Boron: A key element in radical reactions

    Get PDF
    Boron derivatives are becoming key reagents in radical chemistry. Here, we describe reactions where an organoboron derivative is used as a radical initiator, a chain-transfer reagent, and a radical precursor. For instance, B-alkylcatecholboranes, easily prepared by hydroboration of alkenes, represent a very efficient source of primary, secondary, and tertiary alkyl radicals. Their very high sensitivity toward oxygen- and heteroatom-centered radicals makes them particularly attractive for the development of radical chain processes such as conjugate addition, allylation, alkenylation, and alkynylation. Boron derivatives have also been used to develop an attractive new procedure for the reduction of radicals with alcohols and water. The selected examples presented here demonstrate that boron-containing reagents can efficiently replace tin derivatives in a wide range of radical reaction

    The Effects of Seed Size on Hybrids Formed between Oilseed Rape (Brassica napus) and Wild Brown Mustard (B. juncea)

    Get PDF
    Background : Seed size has significant implications in ecology, because of its effects on plant fitness. The hybrid seeds that result from crosses between crops and their wild relatives are often small, and the consequences of this have been poorly investigated. Here we report on plant performance of hybrid and its parental transgenic oilseed rape (Brassica napus) and wild B. juncea, all grown from seeds sorted into three seed-size categories.[br/] Methodology/Principal Findings : Three seed-size categories were sorted by seed diameter for transgenic B. napus, wild B. juncea and their transgenic and non-transgenic hybrids. The seeds were sown in a field at various plant densities. Globally, small-seeded plants had delayed flowering, lower biomass, fewer flowers and seeds, and a lower thousand-seed weight. The seed-size effect varied among plant types but was not affected by plant density. There was no negative effect of seed size in hybrids, but it was correlated with reduced growth for both parents.[br/] Conclusions : Our results imply that the risk of further gene flow would probably not be mitigated by the small size of transgenic hybrid seeds. No fitness cost was detected to be associated with the Bt-transgene in this study

    Generation of Alkyl Radicals:From the Tyranny of Tin to the Photon Democracy

    Get PDF
    Alkyl radicals are key intermediates in organic synthesis. Their classic generation from alkyl halides has a severe drawback due to the employment of toxic tin hydrides to the point that "flight from the tyranny of tin"in radical processes was considered for a long time an unavoidable issue. This review summarizes the main alternative approaches for the generation of unstabilized alkyl radicals, using photons as traceless promoters. The recent development in photochemical and photocatalyzed processes enabled the discovery of a plethora of new alkyl radical precursors, opening the world of radical chemistry to a broader community, thus allowing a new era of photon democracy

    Sexual conflict maintains variation at an insecticide resistance locus

    Get PDF
    Background: The maintenance of genetic variation through sexually antagonistic selection is controversial, partly because specific sexually-antagonistic alleles have not been identified. The Drosophila DDT resistance allele (DDT-R) is an exception. This allele increases female fitness, but simultaneously decreases male fitness, and it has been suggested that this sexual antagonism could explain why polymorphism was maintained at the locus prior to DDT use. We tested this possibility using a genetic model and then used evolving fly populations to test model predictions. Results: Theory predicted that sexual antagonism is able to maintain genetic variation at this locus, hence explaining why DDT-R did not fix prior to DDT use despite increasing female fitness, and experimentally evolving fly populations verified theoretical predictions. Conclusions: This demonstrates that sexually antagonistic selection can maintain genetic variation and explains the DDT-R frequencies observed in nature
    corecore