119 research outputs found

    Prioritization and Planning to Improve Urban Tree Health in the Chicago Region

    Get PDF
    The Chicago Region Trees Initiative (CRTI) has collected one of the largest data sets on urban forestry in the United States. This data informs where and how CRTI prioritizes its work and capacity building. This data has been incorporated into interactive online resources that communities and neighborhoods can access to help decision makers, landowners, and managers understand where and what to plant, the value of the urban forest, impacts of woody invasive species, heat island challenges, and where opportunities exist for oak ecosystem enhancement. This data helps CRTI and its partners to prioritize action

    Cross Sector Partnerships – Development of the Chicago Region Trees Initiative

    Get PDF
    The Chicago Region Trees Initiative (CRTI) is a partnership of more than 200 organizations across the seven county Chicago metro region. The CRTI believes that trees are critical to our quality of life, and its mission is to ensure that trees are more healthy, abundant, diverse, and equitably distributed to provide needed benefits to all people and communities in the Chicago region. Our key goals are to inspire people to value trees, increase the Chicago region’s tree canopy, reduce threats to trees, and enhance oak ecosystems. The CRTI has built upon the work and programs of others, and the experience of partners to shape the urban forest in the Chicago region by 2050

    Genomic insights into the rapid emergence and evolution of MDR in Staphylococcus pseudintermedius.

    Get PDF
    OBJECTIVES: MDR methicillin-resistant Staphylococcus pseudintermedius (MRSP) strains have emerged rapidly as major canine pathogens and present serious treatment issues and concerns to public health due to their, albeit low, zoonotic potential. A further understanding of the genetics of resistance arising from a broadly susceptible background of S. pseudintermedius is needed. METHODS: We sequenced the genomes of 12 S. pseudintermedius isolates of varied STs and resistance phenotypes. RESULTS: Nine distinct clonal lineages had acquired either staphylococcal cassette chromosome (SCC) mec elements and/or Tn5405-like elements carrying up to five resistance genes [aphA3, sat, aadE, erm(B), dfrG] to generate MRSP, MDR methicillin-susceptible S. pseudintermedius and MDR MRSP populations. The most successful and clinically problematic MDR MRSP clones, ST68 SCCmecV(T) and ST71 SCCmecII-III, have further accumulated mutations in gyrA and grlA conferring resistance to fluoroquinolones. The carriage of additional mobile genetic elements (MGEs) was highly variable, suggesting that horizontal gene transfer is frequent in S. pseudintermedius populations. CONCLUSIONS: Importantly, the data suggest that MDR MRSP evolved rapidly by the acquisition of a very limited number of MGEs and mutations, and that the use of many classes of antimicrobials may co-select for the spread and emergence of MDR and XDR strains. Antimicrobial stewardship will need to be comprehensive, encompassing human medicine and veterinary disciplines to successfully preserve antimicrobial efficacy

    Continental-scale homogenization of residential lawn plant communities

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Landscape and Urban Planning 165 (2017): 54-63, doi:10.1016/j.landurbplan.2017.05.004.Residential lawns are highly managed ecosystems that occur in urbanized landscapes across the United States. Because they are ubiquitous, lawns are good systems in which to study the potential homogenizing effects of urban land use and management together with the continental-scale effects of climate on ecosystem structure and functioning. We hypothesized that similar homeowner preferences and management in residential areas across the United States would lead to low plant species diversity in lawns and relatively homogeneous vegetation across broad geographical regions. We also hypothesized that lawn plant species richness would increase with regional temperature and precipitation due to the presence of spontaneous, weedy vegetation, but would decrease with household income and fertilizer use. To test these predictions, we compared plant species composition and richness in residential lawns in seven U.S. metropolitan regions. We also compared species composition in lawns with understory vegetation in minimally-managed reference areas in each city. As expected, the composition of cultivated turfgrasses was more similar among lawns than among reference areas, but this pattern also held among spontaneous species. Plant species richness and diversity varied more among lawns than among reference areas, and more diverse lawns occurred in metropolitan areas with higher precipitation. Native forb diversity increased with precipitation and decreased with income, driving overall lawn diversity trends with these predictors as well. Our results showed that both management and regional climate shaped lawn species composition, but the overall homogeneity of species regardless of regional context strongly suggested that management was a more important driver.This research was supported by the Macrosystems Biology Program in the Emerging Frontiers Division of the Biological Sciences Directorate at the National Science Foundation (NSF) under grants EF-1065548, 1065737, 1065740, 1065741, 1065772, 1065785, 1065831, and 121238320

    Homogenization of Plant Diversity, Composition, and Structure in North American Urban Yards

    Get PDF
    Urban ecosystems are widely hypothesized to be more ecologically homogeneous than natural ecosystems. We argue that urban plant communities assemble from a complex mix of horticultural and regional species pools, and evaluate the homogenization hypothesis by comparing cultivated and spontaneously occurring urban vegetation to natural area vegetation across seven major U.S. cities. There was limited support for homogenization of urban diversity, as the cultivated and spontaneous yard flora had greater numbers of species than natural areas, and cultivated phylogenetic diversity was also greater. However, urban yards showed evidence of homogenization of composition and structure. Yards were compositionally more similar across regions than were natural areas, and tree density was less variable in yards than in comparable natural areas. This homogenization of biodiversity likely reflects similar horticultural source pools, homeowner preferences, and management practices across U.S. cities

    Receiver operating characteristic analysis of age-related changes in lineup performance

    Get PDF
    In the basic face memory literature, support has been found for the late maturation hypothesis, which holds that face recognition ability is not fully developed until at least adolescence. Support for the late maturation hypothesis in the criminal lineup identification literature, however, has been equivocal because of the analytic approach that has been used to examine age-related changes in identification performance. Recently, receiver operator characteristic (ROC) analysis was applied for the first time in the adult eyewitness memory literature to examine whether memory sensitivity differs across different types of lineup tests. ROC analysis allows for the separation of memory sensitivity from response bias in the analysis of recognition data. Here, we have made the first ROC-based comparison of adults’ and children’s (5- and 6-year-olds and 9- and 10-year-olds) memory performance on lineups by reanalyzing data from Humphries, Holliday, and Flowe (2012). In line with the late maturation hypothesis, memory sensitivity was significantly greater for adults compared with young children. Memory sensitivity for older children was similar to that for adults. The results indicate that the late maturation hypothesis can be generalized to account for age-related performance differences on an eyewitness memory task. The implications for developmental eyewitness memory research are discussed

    A Very Early-Branching Staphylococcus aureus Lineage Lacking the Carotenoid Pigment Staphyloxanthin

    Get PDF
    Here we discuss the evolution of the northern Australian Staphylococcus aureus isolate MSHR1132 genome. MSHR1132 belongs to the divergent clonal complex 75 lineage. The average nucleotide divergence between orthologous genes in MSHR1132 and typical S. aureus is approximately sevenfold greater than the maximum divergence observed in this species to date. MSHR1132 has a small accessory genome, which includes the well-characterized genomic islands, νSAα and νSaβ, suggesting that these elements were acquired well before the expansion of the typical S. aureus population. Other mobile elements show mosaic structure (the prophage φSa3) or evidence of recent acquisition from a typical S. aureus lineage (SCCmec, ICE6013 and plasmid pMSHR1132). There are two differences in gene repertoire compared with typical S. aureus that may be significant clues as to the genetic basis underlying the successful emergence of S. aureus as a pathogen. First, MSHR1132 lacks the genes for production of staphyloxanthin, the carotenoid pigment that confers upon S. aureus its characteristic golden color and protects against oxidative stress. The lack of pigment was demonstrated in 126 of 126 CC75 isolates. Second, a mobile clustered regularly interspaced short palindromic repeat (CRISPR) element is inserted into orfX of MSHR1132. Although common in other staphylococcal species, these elements are very rare within S. aureus and may impact accessory genome acquisition. The CRISPR spacer sequences reveal a history of attempted invasion by known S. aureus mobile elements. There is a case for the creation of a new taxon to accommodate this and related isolates
    corecore