65 research outputs found

    Cervical Disc Arthroplasty

    Get PDF

    Cervical Disc Arthroplasty — A Clinical Review

    Get PDF
    Anterior cervical discectomy and fusion (ACDF) has long been considered the gold standard for treating myelopathy and radiculopathy due to disk degeneration. One major complication of this procedure is adjacent segment degeneration. Cervical disc arthroplasty (CDA) has been proposed as an alternative to ACDF and as a means to reduce ASD. This chapter briefly recounts the advent of CDA. Additionally, it describes the most common implants and biomechanical properties associated with those designs. Critical to CDA is meticulous operative technique including implant positioning and hemostasis. Data in the form of FDA IDE studies and more recent meta-analyses of existing studies have demonstrated non-inferiority of CDA when compared to ACDF. This chapter also reviews the most common complications associated with CDA including heterotopic ossification and ankylosis of the involved segment. While more technically demanding than ACDF, CDA does represent a viable alternative in the proper patient

    Monoamine Oxidase is a Major Determinant of Redox Balance in Human Atrial Myocardium and is Associated With Postoperative Atrial Fibrillation

    Get PDF
    BACKGROUND: Onset of postoperative atrial fibrillation (POAF) is a common and costly complication of heart surgery despite major improvements in surgical technique and quality of patient care. The etiology of POAF, and the ability of clinicians to identify and therapeutically target high-risk patients, remains elusive. METHODS AND RESULTS: Myocardial tissue dissected from right atrial appendage (RAA) was obtained from 244 patients undergoing cardiac surgery. Reactive oxygen species (ROS) generation from multiple sources was assessed in this tissue, along with total glutathione (GSHt) and its related enzymes GSH-peroxidase (GPx) and GSH-reductase (GR). Monoamine oxidase (MAO) and NADPH oxidase were observed to generate ROS at rates 10-fold greater than intact, coupled mitochondria. POAF risk was significantly associated with MAO activity (Quartile 1 [Q1]: adjusted relative risk [ARR]=1.0; Q2: ARR=1.8, 95% confidence interval [CI]=0.84 to 4.0; Q3: ARR=2.1, 95% CI=0.99 to 4.3; Q4: ARR=3.8, 95% CI=1.9 to 7.5; adjusted Ptrend=0.009). In contrast, myocardial GSHt was inversely associated with POAF (Quartile 1 [Q1]: adjusted relative risk [ARR]=1.0; Q2: ARR=0.93, 95% confidence interval [CI]=0.60 to 1.4; Q3: ARR=0.62, 95% CI=0.36 to 1.1; Q4: ARR=0.56, 95% CI=0.34 to 0.93; adjusted Ptrend=0.014). GPx also was significantly associated with POAF; however, a linear trend for risk was not observed across increasing levels of the enzyme. GR was not associated with POAF risk. CONCLUSIONS: Our results show that MAO is an important determinant of redox balance in human atrial myocardium, and that this enzyme, in addition to GSHt and GPx, is associated with an increased risk for POAF. Further investigation is needed to validate MAO as a predictive biomarker for POAF, and to explore this enzyme's potential role in arrhythmogenesis

    The Role of Natural Killer (NK) Cells and NK Cell Receptor Polymorphisms in the Assessment of HIV-1 Neutralization

    Get PDF
    The importance of innate immune cells in HIV-1 pathogenesis and protection has been highlighted by the role of natural killer (NK) cells in the containment of viral replication. Use of peripheral blood mononuclear cells (PBMC) in immunologic studies provides both HIV-1 target cells (ie. CD4+ T cells), as well as anti-HIV-1 effector cells, such as NK cells. In this study, NK and other immune cell populations were analyzed in HIV-negative donor PBMC for an impact on the anti-HIV activity of polyclonal and monoclonal antibodies. NK cell percentages were significantly higher in donor PBMC that supported lower levels of viral replication. While the percentage of NK cells was not directly associated with neutralization titers, NK cell-depletion significantly diminished the antiviral antibody activity by up to three logs, and polymorphisms in NK killer immunoglobulin receptor (KIR) and FcγRIIIa alleles appear to be associated with this affect. These findings demonstrate that NK cells and NK cell receptor polymorphisms may influence assessment of traditional HIV-1 neutralization in a platform where antibody is continuously present. This format appears to simultaneously assess conventional entry inhibition (neutralization) and non-neutralizing antibody-dependent HIV inhibition, which may provide the opportunity to delineate the dominant antibody function(s) in polyclonal vaccine responses

    Ionic liquids at electrified interfaces

    Get PDF
    Until recently, “room-temperature” (<100–150 °C) liquid-state electrochemistry was mostly electrochemistry of diluted electrolytes(1)–(4) where dissolved salt ions were surrounded by a considerable amount of solvent molecules. Highly concentrated liquid electrolytes were mostly considered in the narrow (albeit important) niche of high-temperature electrochemistry of molten inorganic salts(5-9) and in the even narrower niche of “first-generation” room temperature ionic liquids, RTILs (such as chloro-aluminates and alkylammonium nitrates).(10-14) The situation has changed dramatically in the 2000s after the discovery of new moisture- and temperature-stable RTILs.(15, 16) These days, the “later generation” RTILs attracted wide attention within the electrochemical community.(17-31) Indeed, RTILs, as a class of compounds, possess a unique combination of properties (high charge density, electrochemical stability, low/negligible volatility, tunable polarity, etc.) that make them very attractive substances from fundamental and application points of view.(32-38) Most importantly, they can mix with each other in “cocktails” of one’s choice to acquire the desired properties (e.g., wider temperature range of the liquid phase(39, 40)) and can serve as almost “universal” solvents.(37, 41, 42) It is worth noting here one of the advantages of RTILs as compared to their high-temperature molten salt (HTMS)(43) “sister-systems”.(44) In RTILs the dissolved molecules are not imbedded in a harsh high temperature environment which could be destructive for many classes of fragile (organic) molecules

    Postoperative Lumbar Spine Infection

    No full text

    Accuracy of a dynamic surgical guidance probe for screw insertion in the cervical spine: a cadaveric study

    No full text
    © 2016, Springer-Verlag Berlin Heidelberg. Study design: A fresh frozen cadaver study was conducted. Objective: To report the cortical breach rate using the dynamic surgical guidance (DSG) probe versus traditional freehand technique for cervical lateral mass, cervical pedicle and cervical laminar screws. Methods: Nine male fresh frozen cadaveric torsos were utilized for this study. Each investigator was assigned three specimens that were randomized by fixation point, side and order of technique for establishing a screw pilot hole. The technique for screw hole preparation utilized was either a DSG probe in the “on” mode or in the “off” mode using a freehand technique popularized by Lenke et al. Levels instrumented included C1 lateral mass, C2 pedicle screws and lamina screws, and C6–T1 pedicle screws. Fluoroscopy and other navigational assistance were not used for screw hole preparation or screw insertion. All specimens were CT imaged following insertion of all screws. A senior radiolo
    corecore