112 research outputs found

    An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge

    Get PDF
    BACKGROUND: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data was donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups

    First Isolation of Japanese Encephalitis Virus Genotype IV from Mosquitoes in Australia

    Get PDF
    Introduction: Widespread transmission of Japanese encephalitis virus (JEV) genotype four (GIV) occurred across mainland Australia in 2022. This resulted in forty-five human cases, including seven deaths, and the identification of JEV infection in over 80 commercial piggeries. Materials and Methods: We collected mosquitoes which were trapped using CO2-baited light traps deployed near piggeries reporting disease or in regions linked to human cases in the Wide Bay region in the state of Queensland. Mosquitoes from four traps yielded JEV RNA by real-time RT-PCR. Pools containing RNA positive mosquitoes were inoculated onto mosquito cell monolayers. Discussion: A single isolate of JEV was obtained from a pool of mixed mosquito species. Near whole genome sequencing and phylogenetic analysis of the JEV isolate demonstrated its high genomic relatedness with JEV GIV pig sequences sampled from Queensland and the state of New South Wales in 2022. Conclusion: We report the first isolation of JEV GIV from mosquitoes collected in Australia. With only a few JEV GIV isolates available globally, the isolate we report will be essential for future research of JEV host interactions, evolution and disease markers, and development of effective therapies, vaccines, diagnostic assays, and mosquito control strategies

    A missense mutation in the MLKL brace region promotes lethal neonatal inflammation and hematopoietic dysfunction

    Get PDF
    MLKL is the essential effector of necroptosis, a form of programmed lytic cell death. We have isolated a mouse strain with a single missense mutation, Mlkl(D139V), that alters the two-helix 'brace' that connects the killer four-helix bundle and regulatory pseudokinase domains. This confers constitutive, RIPK3 independent killing activity to MLKL. Homozygous mutant mice develop lethal postnatal inflammation of the salivary glands and mediastinum. The normal embryonic development of Mlkl(D139V) homozygotes until birth, and the absence of any overt phenotype in heterozygotes provides important in vivo precedent for the capacity of cells to clear activated MLKL. These observations offer an important insight into the potential disease-modulating roles of three common human MLKL polymorphisms that encode amino acid substitutions within or adjacent to the brace region. Compound heterozygosity of these variants is found at up to 12-fold the expected frequency in patients that suffer from a pediatric autoinflammatory disease, chronic recurrent multifocal osteomyelitis (CRMO). Necroptosis is a regulated form of inflammatory cell death driven by activated MLKL. Here, the authors identify a mutation in the brace region that confers constitutive activation, leading to lethal inflammation in homozygous mutant mice and providing insight into human mutations in this region

    Synergy in Efficacy of Fungal Entomopathogens and Permethrin against West African Insecticide-Resistant Anopheles gambiae Mosquitoes

    Get PDF
    Background Increasing incidences of insecticide resistance in malaria vectors are threatening the sustainable use of contemporary chemical vector control measures. Fungal entomopathogens provide a possible additional tool for the control of insecticide-resistant malaria mosquitoes. This study investigated the compatibility of the pyrethroid insecticide permethrin and two mosquito-pathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, against a laboratory colony and field population of West African insecticide-resistant Anopheles gambiae s.s. mosquitoes. Methodology/Findings A range of fungus-insecticide combinations was used to test effects of timing and sequence of exposure. Both the laboratory-reared and field-collected mosquitoes were highly resistant to permethrin but susceptible to B. bassiana and M. anisopliae infection, inducing 100% mortality within nine days. Combinations of insecticide and fungus showed synergistic effects on mosquito survival. Fungal infection increased permethrin-induced mortality rates in wild An. gambiae s.s. mosquitoes and reciprocally, exposure to permethrin increased subsequent fungal-induced mortality rates in both colonies. Simultaneous co-exposure induced the highest mortality; up to 70.3±2% for a combined Beauveria and permethrin exposure within a time range of one gonotrophic cycle (4 days). Conclusions/Significance Combining fungi and permethrin induced a higher impact on mosquito survival than the use of these control agents alone. The observed synergism in efficacy shows the potential for integrated fungus-insecticide control measures to dramatically reduce malaria transmission and enable control at more moderate levels of coverage even in areas where insecticide resistance has rendered pyrethroids essentially ineffective

    Genome of the house fly, Musca domestica L., a global vector of diseases with adaptations to a septic environment

    Get PDF

    Co-Regulation of p16INK4a and Migratory Genes in Culture Conditions that Lead to Premature Senescence in Human Keratinocytes

    Get PDF
    Cellular stasis, also known as telomere-independent senescence, prevents many epithelial cells from becoming immortalized by telomerase alone. As human keratinocytes age in culture, protein levels of the tumor suppressor p16INK4a continue to increase, resulting in growth arrest independent of telomere length. Differences in culture conditions have been shown to modulate both p16INK4a expression and replicative capacity of human keratinocytes; however, the mechanism of p16INK4a induction under these conditions is unknown. Using multiple primary keratinocyte cell strains, we verified a delay in p16INK4a induction and an extended lifespan of human keratinocytes when grown in co-culture with post-mitotic fibroblast feeder cells as compared with keratinocytes grown on tissue culture plastic alone. Evaluation of gene expression levels in the two culture conditions by microarray analysis, and subsequent validation, demonstrated that keratinocytes cultured on plastic alone had significantly increased expression of many genes involved in keratinocyte migration and reduced expression levels of genes involved in keratinocyte differentiation. Higher levels of p16INK4a expression were present in cells that also displayed increased amounts of autophosphorylated focal adhesion kinase and urokinase plaminogen activator receptor (uPAR), both markers of keratinocyte migration. Furthermore, when tyrosine phosphorylation or urokinase-type plasminogen activator (uPA)/uPAR function was inhibited, both keratinocyte migration and p16INK4a expression were reduced. Our results indicate that keratinocytes cultured in the absence of feeder cells exhibit a migratory phenotype and suggest that p16INK4a is selectively induced under these conditions by a mechanism involving tyrosine kinase activity and the urokinase plasminogen activation system
    corecore