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Abstract

Vector-borne protozoan diseases represent a serious public health challenge, especially in the tropics where poverty
together with vector-favorable climates are the aggravating factors. Each of the various strategies currently employed to
face these scourges is seriously inadequate. Despite enormous efforts, vaccines—which represent the ideal weapon
against these parasitic diseases—are yet to be sufficiently developed and implemented. Chemotherapy and vector control
are therefore the sole effective attempts to minimize the disease burden. Nowadays, both strategies are also highly
challenged by the phenomenon of drug and insecticide resistance, which affects virtually all interventions currently used.
The recently growing support from international organizations and governments of some endemic countries is warmly
welcome, and should be optimally exploited in the various approaches to drug and insecticide research and development
to overcome the burden of these prevalent diseases, especially malaria, leishmaniasis, Human African Trypanosomiasis
(HAT), and Chagas disease.
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Background
Major vector-borne protozoans of public health concern
in the tropics include Sporozoa, Rhizopoda, Ciliates, and
Flagellates. Diseases caused by Plasmodia (malaria), and
three major trypanosomatid diseases [leishmaniasis, African
Human Trypanosomiasis (HAT) and Chagas disease] rep-
resent a major public health concern in the tropics. Malaria,
for example, is the world’s most important parasitic disease
especially when Plasmodium falciparum is the causative
agent. The disease is endemic in more than 100 develop-
ing countries where it accounts for about 40 to 45 million
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DALYs (Disability-Adjusted Life Years). The malaria bur-
den, however, is slightly decreasing, and it is unevenly dis-
tributed worldwide: 35 countries, among which 30 in are
Sub-Saharan Africa and five are in Asia, account for 98%
of global malaria deaths [1,2]. Trypanosomatid diseases
are classified as “Tropical Neglected Diseases” by the
World Health Organization (WHO) because of the lack of
attention—both at the community, national, and inter-
national levels—these infections are paid, despite their
heavy burdens, particularly in the tropics [3,4].
The present review discusses and analyzes the major

strategies currently employed in an effort to minimize the
burden of these diseases, and the major progress and
achievements resulting from international as well as local
efforts. Valued reports are comprehensibly documented
on prevention methods (vector control and vaccines),
management tools (chemotherapy, global and regional co-
ordination of control strategies), and the international and
local support to research and development targeting the
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selected diseases. The information was retrieved using the
major keywords presented in this review, and the dupli-
cated data eliminated, with priority given to the earlier
sources of similar information. In brief, data was collected
from 145 articles (appeared in 68 peer-reviewed journals),
four textbook chapters, 17 reports by international organi-
zations, and eight web-published fact sheets, published
between 1945 and 2013. The information gathered was
analyzed and discussed grouped into the major thematic
subjects as presented in the result section below.

Review and discussion
Progress and challenges in prevention methods
The prevention of vector-borne diseases often consists of
blocking the transmission from one person to another
through vectors, and immunization of individuals against
the disease by vaccination or chemoprophylaxis. The first
strategy is permanently challenged by several limitations
whereas the vaccine enterprise for parasitic infections is
yet to bear expected fruits. Chemoprophylactic methods
will be discussed under the section on chemotherapy.

Vector control
About 500 different species of Anopheles exist, up to 60
of which transmit the disease. The most common spe-
cies are Anopheles gambiae, A. arabiensis, A. obscursus,
A. guadrimacutis, A. nili, and A. moucheti [5]. There-
fore, the vector distribution determines the malaria dis-
tribution and endemicity. For example, in the USA and
Europe where climatic factors are not favorable to
Anopheles, malaria is very rare or absent. Vector control
is usually achieved using environmental management, bio-
logical methods, or insecticides which are either directly
sprayed indoors or applied to bed nets (see Table 1)
[2,6-8]. Treatment directed towards mosquito larvae con-
sists of destroying larvae nests using any of the following
Table 1 Types of interventions in vector control and their
limitations

Control methods Advantages Limitations

Environmental hygiene
(eliminates vector’s
nests, etc.)

Efficacy > 50% Necessitates
community-guided actions

Indoor Residual
Spraying (IRS)

Efficacy 60% Harmful effects of residues,
high cost, resistant strains
of mosquitoes

Intermittent Preventive
Treatment (IPT)

Efficacy 56% May enhance drug resistance,
use restricted for pregnant
women and children < 5 years

Insecticide treated
mosquito bed nets

Efficacy 50% High cost, poor adherence of
rural communities, harmful
effects of residues, resistance

Biological control No direct
harmful effects
on humans

Cost, genetic risks

Source: Curtis [7], Lengeler [8], Parise [9], Morel et al. [10].
methods: i) Environmental management methods com-
prising of filling breeding sites, lining water sources and
canals, physical wetland drainage, biological wetland
drainage, impoundment planning, deepening and narrow-
ing of old drains, vegetation manipulation, synchronized
cropping and intermittent irrigation, larvivorous fish
introduction, and saltwater flooding; ii) Larvicidal agents:
bacterial larvicides, methoprene, temephos, and molecular
films and oils [5]. It is reported that from 2008 to 2010,
a cumulative total of 254 million Insecticide Treated
Bed Nets (ITNs) were distributed in Sub-Saharan Africa
to cover 66% of the 765 million persons at risk in the con-
tinent (see Figure 1). However, in order to be effective,
bed nets should be regularly re-treated with insecticides,
and there is also the serious problem of compliance
related to sociocultural considerations in certain com-
munities [9-11].
The major well characterized active ingredients of all

WHO-recommended products for mosquito bed nets
and Indoor Residual Spraying (IRS) come from four
classes of insecticide: pyrethroids, organochlorines (di-
chlorodiphenyltrichloroethane, DDT), organophosphates,
and carbamates. Among these, pyrethroids are by far the
best class, both in terms of safety and effectiveness. How-
ever, the emergence and rapid spread of mosquito strain
presenting insecticide resistance has become a major con-
cern, as the phenomenon is now reported in more than
60% of malaria-endemic countries, with all major vector
species and all classes of insecticides affected [12]. Four
major types of insecticide resistance exist in Anopheles,
namely target-site resistance, metabolic resistance, cuticu-
lar resistance, and behavioral resistance. Target-site resist-
ance is caused by a gene mutation affecting ion channels,
leading to evasion of the target of the insecticide mol-
ecule. Metabolic resistance occurs when increased levels
or modified activities of an enzyme system cause a prema-
ture deactivation of the insecticide before it reaches its tar-
get in the mosquito. The major enzyme systems often
concerned in metabolic resistance by premature deactiva-
tion are: esterases, monooxygenases, and glutathione S-
transferases. In cuticular resistance, a modification in the
composition or structure of the mosquito’s cuticle hinders
the permeability of the insecticide, leading to a poor ab-
sorption and reduced efficiency. Such mechanism has
been observed with pyrethroid in Anopheles funestus due
to an abnormal thickening of the insect’s cuticle. Prob-
ably following continuous exposure to a particular insecti-
cide, mosquitoes may modify their feeding and breeding
behaviors so as to avoid the lethal effects of the insecti-
cide. This type of resistance is termed behavioral resist-
ance [12]. It is noteworthy underlining that the same
mosquito can display more than one resistance type to-
wards a single or several insecticides and this complex
situation is termed cross-resistance. In order to address
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Figure 1 Efforts of the international community towards vector control of protozoan diseases: 2004–2012. Source: WHO [2], PATH [89];
UNICEF Supply Reports for 2010, 2011 & 2012, available at http://www.unicef.org/supply/index_68730.html; ITNs: insecticide-treated bednets.
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the issue of insecticide resistance, WHO [12] advised four
major strategies: i) Rotations of insecticides, implying the
use of two or more insecticides with different mechanisms
of action from one year to the next; ii) Combination of
interventions, using two or more molecules with different
target sites in the same house so as to expose the mosqui-
toes simultaneously to different types of insecticides;
iii) Mosaic spraying, characterized by the use of one in-
secticide in a geographic area and a different molecule in
neighboring areas; like combination of interventions, the
mosquitoes are exposed to more than one insecticide type;
iv) Mixtures, in which two or more insecticides classes are
mixed to make a single product or formulation. However,
despite these strategies being well justified and rational, it
remains difficult to predict how far these new chemical-
based approaches could succeed in eliminating malaria
and other vector-borne infections in the tropics. Each of
these strategies has both advantages and limitations, and
all necessitate concerted efforts at both national and re-
gional levels, which are not always achievable.
Biological methods have recently attracted growing

attention, certainly due to their relatively low cost and
their assumed safety, compared to insecticides. In this
regard, several options have been envisaged, including
the use of refractory mosquitoes and paratransgenic or-
ganisms. In fact, most species of mosquitoes do not
transmit malaria, and even among species that do, many
individuals seem incapable of transmitting the disease
[13]. The existence of such refractory mosquitoes repre-
sents a hope that the genes that permit malarial infec-
tions in mosquitoes can be identified and knocked out,
generating harmless transgenic mosquitoes. Spreading
genetically-modified mosquitoes will eventually replace
the natural malaria-transmitting mosquito populations,
and halt malaria transmission. A variety of methods for
engineering refractory mosquitoes are currently being
studied, with promising results in rodent malaria. Fang
et al. [14] described the use of genetic manipulation
techniques to insert multiple anti-malaria effector genes
into the entomopathogenic fungus Metarhizium aniso-
pliae. When such a modified fungus was used to infect
Anopheles mosquitoes, it could express efficient anti-
malaria effector molecules in the mosquito hemolymph.
By co-expressing several effector molecules simultan-
eously, the authors observed a drastic reduction in sporo-
zoite levels in the mosquito salivary glands reaching up to
98%. These findings suggest hope in the exploration of re-
combinant entomopathogenic fungi as a strategy to con-
trol malaria. Paratransgenesis has equally been shown to
be highly promising in other vector-borne diseases, not-
ably the dengue mosquito [15]. Further investigation into
this innovative approach are therefore, highly encouraged.

The concept of integrated vector management
In order to minimize some of the challenges persisting
in vector control of the selected diseases and optimize
interventions, in 2004, the WHO adopted a new strategy
termed Integrated Vector Management (IVM) [16]. This
is “a rational decision-making process targeting the global
targets set for vector-borne disease control, by making vec-
tor control more efficient, cost effective, ecologically sound
and sustainable”, based on five key elements: 1) evidence-
based decision making, 2) integrated approaches 3), collab-
oration within the health sector and with other sectors,
4) advocacy, social mobilization, and legislation, and
5) capacity-building [16,17]. The WHO equally strongly
recommends that other important sectors such as agricul-
ture, environment, mining, industry, public works, local
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government, and housing, incorporate IVM and vector
control into their own programs to help prevent vector
proliferation and disease transmission due to their activ-
ities. The strategy could target several vectors simultan-
eously. Such an approach—if rigorously implemented—is
very likely to yield great achievements. Success stories of
IVM have been reported in several countries in Africa, in-
cluding Tanzania, Nigeria, Zambia, and Sudan [18-21].
However, this success is tributary of good leadership and
managerial governance from decision makers, and re-
quired an acceptable level of socioeconomic understand-
ing and education of local populations. Unfortunately,
such conditions are still to be met in most endemic trop-
ical countries where the rate of poverty remains high. This
situation may justify the slow progress, which continues
to be observed with the implementation of IVM in Africa
[17]. Therefore, IVM strategies need both technical and
financial support from the international community in
order to bear the expected fruits.

Progress and challenges in vaccine development for
malaria and other protozoan diseases
Malaria Malaria vaccine projects today target any of the
three phases of the parasite lifecycle in humans. A vac-
cine preparation targeting any of the steps of the parasite
lifecycle could either be envisaged from an attenuated
whole organism, or could be made up of sub-unit anti-
gens [22]. Whole-parasite malaria vaccine was thought
feasible since the trials conducted in the 1960s and
1970s that showed sterile, long-lasting protection in mice
and humans after vaccination with radiation-attenuated
sporozoites. Immunization by mosquito bite with whole
Pf sporozoites could consistently induce greater than 90%
of protection against the infection, with the protection
being sustained for at least 10–28 months. But these
findings were hardly reproducible [23]. Recently, Professor
Hoffman’s team at the Vaccine Research Center, National
Institute of Allergy and Infectious Diseases (NAID), USA,
has steadily worked on this approach with the vaccine
candidate named PfSPZ, which has now completed the
Phase I trial involving 40 voluntary adults. These studies
confirmed a dose-dependent immunological threshold
for establishing high-level protection against malaria
that can be achieved by four doses of this vaccine. It is
hoped that the following clinical trials, soon to start in
several countries (Tanzania, USA, Mali, Germany, and
Equatorial Guinea), would confirm the efficacy and suit-
ability of this vaccine candidate [24]. The major challenge
with the use of the whole-organism approach in malaria
vaccine, if successful, would be that it requires huge quan-
tities of biological material to meet the high need espe-
cially for endemic regions, which may be unfeasible.
As opposed to whole-organism vaccines, subunit vaccines
are made up of a single parasite antigen or a combination
of several antigens which have been shown to be vitally in-
volved in infection mechanism. Such vaccine candidates
achieved lower efficacy than whole-parasite vaccines, but
are simpler and represent the class of vaccine candidates
that have gone further in the development pipeline. One
of these subunit vaccines named RTS,S is a hybrid mol-
ecule constructed by fusing the hepatitis B surface antigen
(Haig) to the C-terminal half of the P. falciparum CSP
(amino acid residue 207–395) and co-expressed with un-
fused HBsAg. The fusion protein is incorporated with an
adjuvant termed AS02, based on monophosphoryl lipid A
and QS-21 [25,26]. Clinical trial on RTS,S began in the
USA in 1992 and in Africa in 1998, and has been gradually
stimulated by promising results. Today, RTS,S is the first
malaria vaccine candidate to reach the large-scale Phase
III clinical testing, which is typically one of the last steps
before regulatory approval. This phase started in May
2009 in Tanzania, one of the seven Sub-Saharan African
countries hosting the 11 trial sites of the study. Enrolment
of participants was completed in January 2011, with a total
of 15,461 confirmed participants, including 6,538 infants
aged 6–12 weeks, and 8,923 children aged 5–17 months.
If the final results of this phase are once more conclusive,
the WHO has indicated that a policy recommendation for
RTS,S would then be possible, as early as 2015 [27,28].
However, the primary results of this Phase III trial are not
as encouraging as the ones of the previous phases. The
vaccine candidate reduced severe malaria by about 36.6%
in the younger children aged 6–12 weeks only, and ap-
proximately 50% in the older age group (5–17 months)
[28-30]. Moreover, how soon this vaccine (if approved for
use) would be available and affordable to poor populations
of remote areas in Sub-Saharan Africa remain question-
able. In general, some of the well-recognized factors that
have hindered the development of an effective vaccine
for malaria include genetic complexity of the malaria
parasite (genetic variation across stages), lack of under-
standing of the host mediators of natural immunity, lack
of appropriate assays and surrogates for vaccine safety and
efficacy, limited number of antigens being pursued as vac-
cine candidates, few funding programs to support the vac-
cines research enterprise, and limited number of immune
enhancing adjuvants and vaccine delivery platforms avail-
able for use in humans among others [31-33].

Chagas disease Advances and challenges towards a vac-
cine against Chagas disease have been extensively reviewed
[34]. Briefly, a wide range of formulations has been tested,
including whole parasites, purified or recombinant pro-
teins, viral vectors, and DNA vaccines. Live attenuated
T. cruzi whole organism was shown to confer partial im-
munity, with significant decreased parasitemia, and lower
disease manifestation, especially heart disease. Similar
results were observed with live T. rangeli, an inoffensive



Zofou et al. Infectious Diseases of poverty 2014, 3:1 Page 5 of 14
http://www.idpjournal.com/content/3/1/1
form of the parasite in humans. In addition to the effects
noticed with attenuated T. cruzi, T. rangeli improved sur-
vival considerably. However, total immunity was never ob-
served with the whole parasite vaccine. Another major
limitation of this type of vaccine formulation (like in the
case of malaria) is that it requires a large amount of bio-
logical material, which is quite challenging to generate, in
order to immunize the number of populations in need. In
attempt to overcome these limitations, several recombin-
ant proteins have been prepared and tested for their poten-
tial to protect against Chagas disease. The most prominent
ones are rASP-2 combined with Alum or CpG ODN, rTS
(trans-sialidase) in combination with CpG ODN, rCruzi-
pain + CpG ODN, and rGP82 + CpG ODN. All stimulated
cytokines production lead either to decreased parasitemia
and decreased burden, or decreased inflammation, with
variable effects on the survival [34]. Recombinant virus
vectors have also been designed and tested. The most
prominent examples are the adenoviruses expressing TSSA
CD8 epitope, TS and ASP-2, and the Sendai virus express-
ing ASP-2. Both are likely to provide x alternatives for im-
mune protection. One of the major challenges limiting
these efforts is the design and feasibility of clinical trials,
given that the chronic form of the disease usually takes
several years to develop, and concerns only 20% to 40% of
infected patients. It is therefore very challenging to ration-
ally follow up and draw conclusions from a clinical trial on
Chagas disease vaccine development.

Human African trypanosomiasis The initial vaccine
targets of trypanosomiasis were the variable surface gly-
coproteins made of approximately 107 copies of a single
protein expressed on the surface of the parasite, how-
ever, because of antigenic variation this approach failed
[35]. Considerable success has been recorded by exploit-
ing non- (or less) variable surface molecules necessary
for uptake of nutrients, protein trafficking, endo, and exo-
cytosis, amongst others [36]. These antigens are mostly
found in the flagella pocket (FP) and immunization of cat-
tle with antigens located in the flagella pocket showed par-
tial protection [37]. In a mouse model, it showed a 60%
success rate, which was overcome by challenges with a
higher parasite load (inoculums of 103 parasites or more),
indicating that the induced protection conferred boarder-
line immunity and was temporal [38]. Several specific in-
variant surface glycoproteins have been tried as vaccine
candidates, among which is transferrin receptor ESAG
6/7. Immunization with sub-cellular antigens, actin and
tubulin, involved in cell division and locomotion, have
shown varying degrees of protection, with the latter re-
cording 60–80% in an animal model [39]. Unfortunately,
the design of the experiment did not permit establishment
of the fact that memory of the immune response was
stored in memory B cells, and no sound explanation was
advanced for antibodies having access to intracellular
cytoskeleton protein targets (actin and tubulin). Anti-
disease vaccines have been able to alleviate the symptoms
of the disease e.g. prior treatment of the host with
liposome-based GPI alleviated disease symptoms such as
weight loss, anaemia, liver damage, and locomotion im-
pairment, but no memory was stored as these results can
be reproduced in B-cell deficient animals [40]. Likewise
Congo pain, a cysteine protease, has been assessed as
an anti-disease vaccine, but it only reduced anaemia
and led to weight gain in the study group of animals,
with no significant difference between immunized and
non-immunized controls [41].

Leishmaniasis A vaccine against leishmaniasis is scien-
tifically feasible because, historically, it had been ob-
served that individuals who had healed their skin lesions
from cutaneous leishmaniasis were protected from fur-
ther infections [5-7]. This phenomenon was exploited by
the Bedouin and some Kurdistani societies to acquire
protection from facial lesions later in life by exposing ba-
bies’ bottoms to sand fly bites, or by transfer of infec-
tious materials from lesions to uninfected individuals as
was done in the Middle East (leishmanization). However,
these practices were abandoned by 1990 based on the
possibility of developing large uncontrolled skin lesions,
exacerbation of skin diseases such as psoriasis, and im-
munosuppression demonstrated by the poor response of
vaccines to diphtheria, pertussis and tetanus triple vac-
cine [42,43]. Interest was then turned towards killed par-
asites, and it was shown that vaccination with killed
parasite plus CpG adjuvant conferred protection against
needle challenge but not against vector transmitted par-
asites. However, live attenuated parasites were able to
confer immunity against transmitted parasites, suggest-
ing that parasite persistence may be necessary for pro-
tective immunity pre-munitions [42,43]. Attenuated
parasite for vaccination has been achieved by long term
in vitro culture, selection for temperature sensitivity,
chemical mutagenesis, and irradiation [44]. Based on at-
tenuation, vaccination with dihydrofolate reductase or
thymidylate synthase (DHFR-TS) knockout parasites led
to protection in a mouse model, but not in a monkey
model [45]. Deletion of cysteine proteases in L. major
led to partial protection in an animal model, which was
thought to be a result of rapid clearance of self-limited
parasites [46,47]. Knockouts of Ipg2 deficient parasites
persisted and offered better protection, but, over time,
regained their virulent property by an unknown com-
pensatory mechanism [48,49]. SIR2 single knockout
strain of L. infantum confers protection, but the pres-
ence of the second allele of SIR2 raises the probability of
reversal to virulence [50]. A non-virulent strain such as
the L. tarentolae of lizard has shown protection against
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visceral leishmaniasis in a mouse model [51]. However
this approach has the limitation of safety and challenges
associated with large-scale production. Sub-unit vaccines
are an attractive alternative for leishmania, and amongst
the interesting molecules studied are surface expressed
glycoprotein leishmanolysin (gp63), which elicited a strong
immune response in an animal model but had very little
or no T cell response in humans [52]. Parasite surface anti-
gen 2 (PSA-2) involved in invasion by binding to comple-
ment receptor 3 has shown protection in its native form
but not as a recombinant antigen [53-55]. Leishmania
homologue for receptors of activated c Kinase (LACK)
has shown protection in BALB/c mice challenged with
L. major, but the immune response was skewed to detri-
mental Th2 and did not protect against VL [56-58]. Other
antigens have been newly identified. However, the only
second-generation vaccine candidate that has been clinic-
ally tried is Leish-111f, a chimeric protein of L. major,
homologue of eukaryotic thiol-specific antioxidant
(TSA), L. major stress-inducible protein-1 (lmTI1), and
L. braziliensis elongation and initiation factor (LeiF), which
protected mice against L. major and L. amazonensis, and
showed partial protection in an animal model against VL
but did not protect dogs in the Phase III trial [59-62].
Human Phase I and II clinical trials have been carried out
on Leish 111 f. An improved construct Leish 110f in com-
bination with chemotherapy has been used to reduce the
death rate and increase survival probability [63,64]. Pres-
ently, research in VL (the worst form of leishmaniasis) is
greatly slowed down by the lack of an appropriate animal
model for the disease, and our limited understanding of
the mechanism of long-lasting protective immunity.

Disease management
Progress and challenges in chemotherapy to combat
protozoan diseases
The sector of drug research for diseases of the poor has
attracted less attention than other sectors despite their
heavy burden. Consequently, only a limited number of
pharmaceuticals are currently in use, with a few candi-
dates still in the pipeline (see Tables 2 and 3) [65].

Malaria Relatively low-cost treatment regiments are
available against malaria, but the emergence and persist-
ent spread of resistance against all existing therapies have
aggravated the disease burden in endemic regions [66,67].
Based on their chemical nature, the currently used anti-
malarials can be grouped under nine classes (see Figure 2):
4-aminoquinolines, 8-aminoquinolines, amino-alcohols,
sulfamines and sulfones, Biguanides, diaminopyrimidine,
sesquiterpenes lactones, naphthoquinones, and antibiotics
[68]. Despite a large number of antimalarial drugs avail-
able, there is no perfect drug; each individual drug or drug
combination has its own limitations ranging from poor
compliance, side effects, toxicity, or resistance. For several
decades, drug resistance has remained the greatest chal-
lenge to malaria control, and is one of the obstacles that
sapped the dream of seeing malaria eradicated by the
1970s. So far, resistance has been fully established in three
of the five Plasmodium species responsible for human
malaria (P. falciparum, P. vivax, and P. malariae), and this
concerns virtually all drug regiments in current use. With
this challenge, monotherapies have been strongly discour-
aged in favor of combination therapies. Several formula-
tions are currently used and contain two or more
individual drugs which differ by the targets in the parasite
and the half-life time. In order to prevent or delay the
emergence of resistance to artemisinin, the most ef-
fective drugs for uncomplicated malaria, Artemisinin-
based Combination Therapies (ACT) have been strongly
recommended by the WHO, and quinolines were selected
as the preferred partner drug to artemisinins. The choice
of this class of compounds in the formulation of ACTs
was justified by the fact that they are long-acting drugs
and have different targets from the ones of artemisinins in
Plasmodium. By 2011, 79 countries had adopted ACTs as
the first-line treatment for P. falciparum. Consequently,
the number of ACT-treatment courses delivered to both
public and private sectors globally increased from 11 mil-
lion in 2005 to 278 million in 2011. A total of 36 out of 45
Sub-Saharan African countries had adopted Intermittent
Preventive Treatment (IPT) for pregnant women by
December 2011. In 25 of the 36 high-burden countries
in the WHO African region, 44% of pregnant women
attending antenatal clinics received two doses of IPT in
2011 [2]. This coverage in IPT remains unacceptably low
in some 16 countries in the African continent, particularly
in Nigeria and DR Congo. In 2012, the WHO recom-
mended a seasonal malaria chemoprevention for chil-
dren aged 3–59 months, but this new intervention tool is
yet to be adopted by individual countries. Sulphadoxine-
pyrimethamine (SP), administered either at health facilities
or as self-medication, is the most recommended chemo-
therapy in Cameroon and several other countries in Sub-
Saharan Africa. Drug resistance occurs as a phenotype of
mutation affecting parasite genome conferring evasion
from drug targeting through any of the following mecha-
nisms: drug inactivation or modification, active efflux, and
alterations in the primary site of action or metabolic path-
way [69,70]. Over time, resistance becomes established
in the population, and can be very stable and persist-
ing long after specific drug pressure is removed [69]. Re-
sistance to artemisinins has been detected in four countries
in South East Asia: Cambodia, Myanmar, Thailand, and
Vietnam. There is an urgent need to expand containment
efforts in affected countries, as well as neighboring regions
[67]. Numerous factors have been identified to influence
drug resistance: i) the intrinsic frequency with which the



Table 2 Limitations and desired product profiles of drugs for malaria, leishmania, Human African Trypanosomiasis,
and Chagas disease

Drugs Limitations Desired profile of new
products

Malaria

Quinine (Quinine sulphate, Quinimax) (1930) Compliance, resistance (1960s), safety Active against resistant
strains; oral formulations,
with option for parenteral
use for patients in coma;
use in pediatric
formulation; potential
combination with other
agents; use in pregnancy;
cure in three days; stable
under tropical conditions;
inexpensive.

Chloroquine (Nivaquine, Aralen) (1945) Resistance (1950s)

Primaquine (1948) Safety, contra-indicated in G6PD deficiency, pregnancy

Sulphadoxine-pyrimethamine (Maloxine, Fansidar) (1961) Resistance (1960s)

Amodiaquine (Camoquin) (1950) Resistance, safety

Artemisinins (1994) Cost, resistance (2008), potential neurotoxicity

Mefloquine (Lariam, Mephaquine) (1984) Resistance (1980s), cost, contra-indicated in known or
suspected history of neuropsychiatric disorder

Resistance, cost, safety, or recent (<3 weeks) use of Halofantrine

Halofantrine (1975) Compliance, resistance potential, contra-indicated in
cardiac disease and pregnancy

Artemether/lumefantrine (Coartem, Mephaquine) (2001) Compliance, cost, resistance, GMP, potential neurotoxicity

Artesunate/amodiaquine (ASAQ) (2007) Compliance, cost, resistance, GMP, safety, contra-indicated
in pregnancy

Atovaquone/proguanil (1999) Cost, resistance potential

Tetracycline (1940s), doxycycline (1960s) Contra-indicated for those aged less than eight years and
in pregnancy

Clindamycin (Dalacin, Lincocin) (1968) Efficacy, contra-indicated in severe hepatic or renal
impairment; history of gastrointestinal disease, especially colitis

Adapted from Schiltzer [68], Nwaka and Ridley [75], Nwaka and Hudson [78] and DNDi [79].
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genetic changes occur; ii) the degree of resistance conferred
by the genetic change; iii) the “fitness cost” of the resistance
mechanism; iv) the proportion of all transmissible infec-
tious agents exposed to the drug (exposure pressure); v) the
number of parasites exposed to the drug; vi) the concentra-
tion of the drug to which the parasite is exposed; vii) the
pharmacokinetics and pharmacodynamics of the antimalar-
ial medicine; viii) individual (dosing, duration, compliance)
and community (quality, availability, distribution) patterns
of drug use; ix) the immunity profile of the commu-
nity and the individual; x) the simultaneous presence
of other antimalarial drugs or substances in the blood to
which the parasite is not resistant; xi) the transmission in-
tensity [69-71].
Today, in addition to drug resistance, the counterfeit-

ing of pharmaceuticals, especially antimalarials, is also a
well-established and alarming public health concern in
most of the endemic countries [72-74]. A recent study
was carried out by the WHO targeting artemisinins and
SP circulating in six selected Sub-Saharan African coun-
tries. Out of the 160 samples collected in Cameroon,
from both illicit markets and legally established pharma-
cies or institutions, 37% did not meet the pre-specified
internationally acceptable quality criteria. The medicines
with the highest failure rates were artesunate-amodiaquine
combinations, and up to half of the SP samples failed
predominantly in dissolution as well [74]. This situation
indicated that more attention is urgently needed both at
the local and international levels to ensure the quality of
the products circulating. This implies a strict adherence to
GCP, GLP, as well as GMP rules and regulations. In
addition, more should be invested in pharmacovigilance.

Leishmaniasis A limited number of drugs are available
for the treatment of leishmaniasis and these face chal-
lenges including limited efficacy for different strains and
species, toxicity, affordability in poor communities, and
development of drug resistance (see Table 3, Figure 3)
[3,75]. Furthermore, these therapies are highly costly
thus unaffordable to most concerned, i.e. patients living
in low-income remote areas of endemic countries, and
they are also subject to drug resistance issues [76-79].
Although no new drugs have been developed recently, a
number of clinical trials have been undertaken on a
handful of drug candidates, resulting in fruitful out-
comes. These include allopurinol, a drug currently used
for the treatment of gout. This molecule was shown to
inhibit the enzyme hypoxanthine guanine phosphoribo-
syltransferase (HGPRTase), interfering with protein syn-
thesis in leishmania. Allopurinol is effectively used in
veterinary medicine against the canine’s form of leish-
maniasis. It is equally under trial for the treatment of



Table 3 Limitations and desired product profiles of drugs for leishmania, Human African Trypanosomiasis, and
Chagas disease

Drugs Limitations Desired profiles of new products

Leishmaniasis

Antimonials (1950) Safety, poor compliance, resistance Active against resistant strains; oral drug or safe
injectable; cure in less than 28 days; pediatric
formulation; potential combination with other agents;
use in pregnancy; stable under tropical conditions;
affordable

Pentamidine (Lomidine) (1939) Safety, poor compliance, resistance

Amphotericin B (Fungizone) (1959) Safety, poor compliance, resistance

Liposomal amphotericin B (AmBisome) (1990) Safety, poor compliance, resistance

Miltefosine (2002) Safety, poor compliance, resistance

Sodium Stibogluconate/paromomycin (SSG&PM) (2010) Contra-indicated in pregnancy

Human African Trypanosomiasis

Suramin (1920) Efficacy, injectable Use against early and late stage disease; active against
both major species; parenteral with option for oral use;
cure in less than 14 days; pediatric formulation;
potential combination with other agents; use in
pregnancy; stable under tropical conditions; affordable

Melarsoprol (1949) Safety, injectable

Pentamidine (1939) Resistance, compliance, injectable

Eflornithine (1991) Cost, injectable, efficacy

NECT (Nifurtimox/eflornithine) (2009) Cost, injectable, compliance

Chagas disease

Benznidazole (1970) Activity limited to acute stage of
disease, some safety issues

Active against blood and tissue forms of parasite; active
in prevention of chronic stage of the disease; pediatric
formulation; potential combination with other agents;
use in pregnancy; stable under tropical conditions;
affordable

Nifurtimox (1974) Activity limited to acute stage of
disease, some safety issues

Adapted from Adapted from Nwaka and Ridley [75], Nwaka and Hudson [78] and DNDi [79].
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Chagas disease in addition to its antileishmanial potential.
However, allopurinol was observed to cause hypersensitiv-
ity with several adverse effects including chronic kidney
disease, hypertension, and higher cholesterol, among others
[80,81]. Ketoconazole, an inhibitor of cytochrome P450
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trial for use in dogs and in humans in certain Latin
American countries [82]. More promising again is miltefo-
sine, an oral medication with anti-leishmanial activity [83].

Human African Trypanosomiasis (HAT) HAT control
is seriously hindered because only a few drugs are
available, all of which have significant drawbacks includ-
ing mandatory parenteral administration, unaffordability,
and unacceptable toxicity. Only a handful of drugs—
melarsoprol, nifurtimox, and eflornithine (see Figure 4)—are
efficacious against cerebral stage 2 disease occurring in
the West African type of sleeping sickness [3,77,84]. Drug
resistance, especially after melarsoprol treatment reported
in several African countries (DR Congo, Sudan, Uganda,
and Angola), represents a growing challenge to the control
of African trypanosomiasis [3,85]. Enormous efforts are
being invested to improve the use of currently registered
drugs, including a shortened ten-day course (rather
than 21–35 days) of melarsoprol that followed pharma-
cokinetic studies and a clinical trial with a three-day
course of pentamidine. The orally available pro-drug
pafuramidine, which was in clinical trials for first stage
disease, encountered issues of toxicity [3]. Conclusive
results from Phase III evaluation have led to inclusion,
in the WHO essential drug list, of nifurtimox in com-
bination with eflornithine to treat HAT. The druggable
molecule fexinidazole showed very significant activity
from a stage 2 mouse model of HAT, and is currently in
Phase I of clinical evaluation by the Drugs for Neglected
Diseases Initiative (DNDi) in partnership with Sanofi-
Aventis [3].

Chagas disease The goal of a specific treatment against
T. cruzi infection is to eliminate the parasite from the
infected individual and, accordingly, to decrease the
probability of developing symptomatic Chagas disease,
and hinder parasite transmission [3]. Surprisingly, only
two drugs registered more than 40 years ago continue to
be used for Chagas disease despite the widespread bur-
den of the disease [3]. Both molecules, nifurtimox and
benznidazole, require prolonged treatment (60 days) and
have frequent side effects that can lead to discontinuation
of treatment. In addition, they are genotoxic, which pre-
cludes treatment during pregnancy [3]. The TDR Disease
Reference Group on Chagas Disease, Human African
Trypanosomiasis and Leishmaniasis suggests that the
priorities in Chagas disease research and development
(R&D) should be to produce new drugs that provide a
shorter treatment course with fewer side effects, and also
to devise pediatric formulations. In this regard, some of
the most promising approaches are ergosterol biosynthesis
inhibitors, such as posaconazole. This drug candidate is
under Phase II of clinical trial since October 2010 in Spain
[86] and July 2011 in Argentina, sponsored by Merck
Sharp & Dohme Corp. [87]. Additionally, DNDi in part-
nership with the pharmaceutical company Eisai Co., Ltd.,
is currently conducting a Phase II trial of Benznidazole
(E1224), a pro-drug of ravuconazole (E1224). This project
started in Bolivia in July 2011 [88].

Increasing investment in research and development
(R&D) targeting vector-borne protozoan diseases
Investment in malaria research and development (R&D)
has quadrupled in the past 16 years, from $US121 million
in 1993 to $US612 million in 2009 (see Figures 5 and 6).
Of these funds, 38% was invested in drug R&D, 28% in
vaccines, 23% in basic research, 4% in vector control prod-
ucts, 1% in diagnostics, and the remaining in other related
researches. Among the main sponsor organizations world-
wide, the Bill & Melinda Gates Foundation and the US
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National Institutes of Health (NIH) provided a striking
half of the global malaria R&D funding in 2007–2009, and
were responsible for 85% of the global increase in malaria
funding. The Gates Foundation was the single largest
funder, providing 30% of global funding in 2009, while the
US NIH provided 19%. In the public sector, the USA dom-
inated, providing more than half of all public investment
each year, and five times more than any other government
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[28,89,90]. The action of these funding bodies is fostered
by technical support; the coordinating and networking
contribution of Contract Research organizations (CROs)
such as Medicines for Malaria Venture (MMV), Drugs for
Neglected Diseases Initiative (DNDi), and others; and
internationally renowned pharmaceuticals companies such
as Novartis (pioneer of ACTs), Sanofi-Aventis, and Pfizer
among others. For instance, Sanofi has put in place a
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malaria drug R&D initiative which made significant input
into malaria control through ACT formulations, and
Novartis recently established the Biomedical Research In-
stitute dedicated to Tropical Diseases, with laboratories
based in Singapore. Equally, GlaxoSmithKline (GSK) has
set up a R&D initiative targeting major diseases of the de-
veloping world. The significant achievements recorded
since 2000 can therefore be attributed to the increasing
implication of both international and local authorities in
the fight against malaria. For instance, 79 of the 104 total
endemic countries in 2012 are classified as being in the
control phase, while ten are in the pre-elimination phase
and ten are in elimination phase. Furthermore, five coun-
tries are considered to be in the prevention of the re-
introduction phase. Of the 58 malaria-endemic countries
with complete data on malaria cases between 2000 and
2011, 50, including nine countries in the African region,
are on track to meet the World Health Assembly (WHA)
and Roll Back Malaria (RBM) targets to reduce incidence
of malaria cases by 75% by 2015. Four other countries are
projected to achieve 50–75% reduction. However, three
Latin American countries have, instead, witnessed signifi-
cant increases in malaria cases [8]. At national levels fund-
ing had also been consistent for some countries. In
general, between 2003 and 2009, 81 of the 108 malaria en-
demic nations spent their own local resources independ-
ently of financial support from the global community for
their malaria-control work [91]. Pigott et al. [92] reports
that in the period 2006–2010, eight malaria endemic coun-
tries (Belize, Costa Rica, Iraq, Malaysia, Panama, Paraguay,
Republic of Korea, Saudi Arabia, Turkey) had pursued and
sustained their malaria control programs with no inter-
national support, and four others (Argentina, Cape Verde,
El Salvador, Mexico) received less than $US50,000 cumula-
tive funding from the international community. However,
none of these countries are in Africa, and they are all
characterized by small populations at risk, a low level of
falciparum malaria and above-average GDP per capita.
However, since 2007, there has been a steady decline

in funding for drug R&D (down to $US49 million, 21%),
These trends may be explained, in part, by the maturity of
the drug portfolio, with successful registration of several
new antimalarials, including artesunate/amodiaquine (2008),
artesunate/mefloquine (AS/MQ, 2008) and Coartem®
Dispersible pediatric formulation (2009), and submission
for registration of Eurartesim™ (2010) and Pyramax®
(2010)—as well as the termination of unsuccessful drug
candidates, including isoquine (2008) and chlorproguanil-
dapsone-artesunate (2009) [28,89-92]. These achievements
may have been interpreted as critical steps towards mal-
aria eradiation, underestimating the steady threat of drug
resistance. Furthermore, the majority of countries in the
African region are control focused, with strategies heavily
funded by external donors including vector control and
subsidy for existing ACTs. African governments should be
more present to provide institutional and financial support,
and create an environment conducive to R&D, instead of
relying on the lone support from developed countries.

Conclusions
Despite significant efforts both at the international and
local levels in containing the burden of malaria and trypa-
nosomatid infections, growing challenges remain including
the difficulties in developing effective vaccines, coupled
with the various limitations of existing therapies, the emer-
gence and rapid spreads of resistance against insecticides,
and the available drugs. It is crucial to optimize the exploit-
ation of existing facilities through a number of approaches
to drug discovery and development. While vaccine research
should continue to be supported, interventions in vector
control and drugs need special and sustained efforts. Bio-
logical tools in vector control look highly promising and
the innovation deserves a particular attention. Finally, based
on past experiences and the predominant role played by
natural products in tropical regions, it is reasonably hoped
this leads (notably from medicinal plants) merit special
consideration in the development of the next generation of
drugs against these diseases. Work should be moved be-
yond preliminary studies, to include in vivo screening,
AMEDT, and target identification and validation, which are
likely to yield potent new drug candidates (e.g. phytomedi-
cine from multi-potent herbal medicines), for the good of
the poor populations suffering the burden of these parasitic
infections in Africa, Asia, and Latin America.
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