44 research outputs found

    Stabilization of G-quadruplex in the BCL2 promoter region in double-stranded DNA by invading short PNAs

    Get PDF
    Numerous regulatory genes have G-rich regions that can potentially form quadruplex structures, possibly playing a role in transcription regulation. We studied a G-rich sequence in the BCL2 gene 176-bp upstream of the P1 promoter for G-quadruplex formation. Using circular dichroism (CD), thermal denaturation and dimethyl sulfate (DMS) footprinting, we found that a single-stranded oligonucleotide with the sequence of the BCL2 G-rich region forms a potassium-stabilized G-quadruplex. To study G-quadruplex formation in double-stranded DNA, the G-rich sequence of the BCL2 gene was inserted into plasmid DNA. We found that a G-quadruplex did not form in the insert at physiological conditions. To induce G-quadruplex formation, we used short peptide nucleic acids (PNAs) that bind to the complementary C-rich strand. We examined both short duplex-forming PNAs, complementary to the central part of the BCL2 gene, and triplex-forming bis-PNAs, complementary to sequences adjacent to the G-rich BCL2 region. Using a DMS protection assay, we demonstrated G-quadruplex formation within the G-rich sequence from the promoter region of the human BCL2 gene in plasmid DNA. Our results show that molecules binding the complementary C-strand facilitate G-quadruplex formation and introduce a new mode of PNA-mediated sequence-specific targeting

    Importance of TP53 codon 72 and intron 3 duplication 16bp polymorphisms in prediction of susceptibility on breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>TP53 </it>is one of major tumour suppressor genes being essential in preservation of genome integrity. Two very common polymorphisms have been demonstrated to contribute to cancer susceptibility and tumour behaviour. The purpose of this study was to evaluate the role of <it>Arg72Pro </it>and <it>PIN3 Ins16bp </it>polymorphisms in <it>TP53 </it>gene as genetic susceptibility and predictive markers to breast cancer.</p> <p>Methods</p> <p>We analysed DNA samples from 264 breast cancer patients and 440 controls, for <it>TP53 Arg72Pro </it>and <it>PIN3 Ins16bp </it>polymorphisms using PCR-RFLP.</p> <p>Results</p> <p>We observed that women with <it>A2A2 </it>genotype have increased risk for developing breast cancer, either in women with or without familial history (FH) of the disease (OR = 4.40, 95% CI 1.60–12.0; p = 0.004; OR = 3.88, 95% CI 1.18–12.8; p = 0.026, respectively). In haplotype analysis, statistically significant differences were found between <it>TP53 Arg-A2 </it>haplotype frequencies and familial breast cancer cases and the respective control group (OR = 2.10, 95% CI 1.08–4.06; p = 0.028). Furthermore, both <it>TP53 </it>polymorphisms are associated with higher incidence of lymph node metastases.</p> <p>Conclusion</p> <p>Our findings suggest <it>TP53 PIN3 Ins16bp </it>polymorphism as a real risk modifier in breast cancer disease, either in sporadic and familial breast cancer. Furthermore, both TP53 polymorphisms are associated with higher incidence of lymph node metastases.</p

    Circular dichroism and conformational polymorphism of DNA

    Get PDF
    Here we review studies that provided important information about conformational properties of DNA using circular dichroic (CD) spectroscopy. The conformational properties include the B-family of structures, A-form, Z-form, guanine quadruplexes, cytosine quadruplexes, triplexes and other less characterized structures. CD spectroscopy is extremely sensitive and relatively inexpensive. This fast and simple method can be used at low- as well as high-DNA concentrations and with short- as well as long-DNA molecules. The samples can easily be titrated with various agents to cause conformational isomerizations of DNA. The course of detected CD spectral changes makes possible to distinguish between gradual changes within a single DNA conformation and cooperative isomerizations between discrete structural states. It enables measuring kinetics of the appearance of particular conformers and determination of their thermodynamic parameters. In careful hands, CD spectroscopy is a valuable tool for mapping conformational properties of particular DNA molecules. Due to its numerous advantages, CD spectroscopy significantly participated in all basic conformational findings on DNA

    Stability and kinetics of G-quadruplex structures

    Get PDF
    In this review, we give an overview of recent literature on the structure and stability of unimolecular G-rich quadruplex structures that are relevant to drug design and for in vivo function. The unifying theme in this review is energetics. The thermodynamic stability of quadruplexes has not been studied in the same detail as DNA and RNA duplexes, and there are important differences in the balance of forces between these classes of folded oligonucleotides. We provide an overview of the principles of stability and where available the experimental data that report on these principles. Significant gaps in the literature have been identified, that should be filled by a systematic study of well-defined quadruplexes not only to provide the basic understanding of stability both for design purposes, but also as it relates to in vivo occurrence of quadruplexes. Techniques that are commonly applied to the determination of the structure, stability and folding are discussed in terms of information content and limitations. Quadruplex structures fold and unfold comparatively slowly, and DNA unwinding events associated with transcription and replication may be operating far from equilibrium. The kinetics of formation and resolution of quadruplexes, and methodologies are discussed in the context of stability and their possible biological occurrence

    Classification of BRCA1 missense variants of unknown clinical significance

    No full text
    Background: BRCA1 is a tumour suppressor with pleiotropic actions. Germline mutations in BRCA1 are responsible for a large proportion of breast–ovarian cancer families. Several missense variants have been identified throughout the gene but because of lack of information about their impact on the function of BRCA1, predictive testing is not always informative. Classification of missense variants into deleterious/high risk or neutral/low clinical significance is essential to identify individuals at risk. Objective: To investigate a panel of missense variants. Methods and results: The panel was investigated in a comprehensive framework that included (1) a functional assay based on transcription activation; (2) segregation analysis and a method of using incomplete pedigree data to calculate the odds of causality; (3) a method based on interspecific sequence variation. It was shown that the transcriptional activation assay could be used as a test to characterise mutations in the carboxy-terminus region of BRCA1 encompassing residues 1396–1863. Thirteen missense variants (H1402Y, L1407P, H1421Y, S1512I, M1628T, M1628V, T1685I, G1706A, T1720A, A1752P, G1788V, V1809F, and W1837R) were specifically investigated. Conclusions: While individual classification schemes for BRCA1 alleles still present limitations, a combination of several methods provides a more powerful way of identifying variants that are causally linked to a high risk of breast and ovarian cancer. The framework presented here brings these variants nearer to clinical applicability

    An interlocked dimeric parallel-stranded DNA quadruplex: A potent inhibitor of HIV-1 integrase

    No full text
    We report on the NMR-based solution structure of the 93del d(GGGGTGGGAGGAGGGT) aptamer, a potent nanomolar inhibitor of HIV-1 integrase. This guanine-rich DNA sequence adopts an unusually stable dimeric quadruplex architecture in K(+) solution. Within each 16-nt monomer subunit, which contains one A·(G·G·G·G) pentad sandwiched between two G·G·G·G tetrads, all G-stretches are parallel, and all guanines are anti with the exception of G1, which is syn. Dimer formation is achieved through mutual pairing of G1 of one monomer, with G2, G6, and G13 of the other monomer, to complete G·G·G·G tetrad formation. There are three single-nucleotide double-chain-reversal loops within each monomer fold, such that the first (T5) and third (A12) loops bridge three G-tetrad layers, whereas the second (A9) loop bridges two G-tetrad layers and participates in A·(G·G·G·G) pentad formation. Results of NMR and of integrase inhibition assays on loop-modified sequences allowed us to propose a strategy toward the potential design of improved HIV-1 integrase inhibitors. Finally, we propose a model, based on molecular docking approaches, for positioning the 93del dimeric DNA quadruplex within a basic channel/canyon formed between subunits of a dimer of dimers of HIV-1 integrase
    corecore