368 research outputs found

    Equilibration of High Molecular-Weight Polymer Melts: A Hierarchical Strategy

    Full text link
    A strategy is developed for generating equilibrated high molecular-weight polymer melts described with microscopic detail by sequentially backmapping coarse-grained (CG) configurations. The microscopic test model is generic but retains features like hard excluded volume interactions and realistic melt densities. The microscopic representation is mapped onto a model of soft spheres with fluctuating size, where each sphere represents a microscopic subchain with NbN_{\rm b} monomers. By varying NbN_{\rm b} a hierarchy of CG representations at different resolutions is obtained. Within this hierarchy, CG configurations equilibrated with Monte Carlo at low resolution are sequentially fine-grained into CG melts described with higher resolution. A Molecular Dynamics scheme is employed to slowly introduce the microscopic details into the latter. All backmapping steps involve only local polymer relaxation thus the computational efficiency of the scheme is independent of molecular weight, being just proportional to system size. To demonstrate the robustness of the approach, microscopic configurations containing up to n=1000n=1000 chains with polymerization degrees N=2000N=2000 are generated and equilibration is confirmed by monitoring key structural and conformational properties. The extension to much longer chains or branched polymers is straightforward

    The Cassie-Wenzel transition of fluids on nanostructured substrates: Macroscopic force balance versus microscopic density-functional theory

    Get PDF
    Classical density functional theory is applied to investigate the validity of a phenomenological force-balance description of the stability of the Cassie state of liquids on substrates with nanoscale corrugation. A bulk free-energy functional of third order in local density is combined with a square-gradient term, describing the liquid-vapor interface. The bulk free energy is parameterized to reproduce the liquid density and the compressibility of water. The square-gradient term is adjusted to model the width of the water-vapor interface. The substrate is modeled by an external potential, based upon Lennard-Jones interactions. The three-dimensional calculation focuses on substrates patterned with nanostripes and square-shaped nanopillars. Using both the force-balance relation and density-functional theory, we locate the Cassie-to-Wenzel transition as a function of the corrugation parameters. We demonstrate that the force-balance relation gives a qualitatively reasonable description of the transition even on the nanoscale. The force balance utilizes an effective contact angle between the fluid and the vertical wall of the corrugation to parameterize the impalement pressure. This effective angle is found to have values smaller than the Young contact angle. This observation corresponds to an impalement pressure that is smaller than the value predicted by macroscopic theory. Therefore, this effective angle embodies effects specific to nanoscopically corrugated surfaces, including the finite range of the liquid-solid potential (which has both repulsive and attractive parts), line tension, and the finite interface thickness. Consistently with this picture, both patterns (stripes and pillars) yield the same effective contact angles for large periods of corrugation.Comment: 13 pages 9 figure

    Dynamic coarse-graining of polymer systems using mobility functions

    Get PDF

    One size fits all: equilibrating chemically different polymer liquids through universal long-wavelength description

    Full text link
    Mesoscale behavior of polymers is frequently described by universal laws. This physical property motivates us to propose a new modeling concept, grouping polymers into classes with a common long-wavelength representation. In the same class samples of different materials can be generated from this representation, encoded in a single library system. We focus on homopolymer melts, grouped according to the invariant degree of polymerization. They are described with a bead-spring model, varying chain stiffness and density to mimic chemical diversity. In a renormalization group-like fashion library samples provide a universal blob-based description, hierarchically backmapped to create configurations of other class-members. Thus large systems with experimentally-relevant invariant degree of polymerizations (so far accessible only on very coarse-grained level) can be microscopically described. Equilibration is verified comparing conformations and melt structure with smaller scale conventional simulations

    Coarse-Grained Models of Biological Membranes within the Single Chain Mean Field Theory

    Full text link
    The Single Chain Mean Field theory is used to simulate the equilibrium structure of phospholipid membranes at the molecular level. Three levels of coarse-graining of DMPC phospholipid surfactants are present: the detailed 44-beads double tails model, the 10-beads double tails model and the minimal 3-beads model. We show that all three models are able to reproduce the essential equilibrium properties of the phospholipid bilayer, while the simplest 3-beads model is the fastest model which can describe adequately the thickness of the layer, the area per lipid and the rigidity of the membrane. The accuracy of the method in description of equilibrium structures of membranes compete with Monte Carlo simulations while the speed of computation and the mean field nature of the approach allows for straightforward applications to systems with great complexity.Comment: Accepted for publication in Soft Matte

    The biology and ecology of Valencia letourneuxi Sauvage 1880 (Valenciidae) - Prospects for conservation

    Get PDF
    Data are provided on the distribution, abundance, early development and biology of the endangered Greek endemic species Valencia letourneuxi Sauvage 1880, along with a record of its occurrence at new localities. V. letourneuxi is a small-bodied and short-lived insectivorous species, exhibiting cryptic colouration and sexual dimorphism. It matures in the first year of life, reproduces serially in late spring and summer, and deposits spherical eggs, around 2 mm, on aquatic plants. Most morphometric characters show size-specific trends, which complicate comparisons among populations or with other species. Of specific systematic importance is the relative position of the anal and dorsal fins, which remains almost unaltered throughout development, and allows safe distinction from A. fasciatus. The species was found mostly in deep areas with clean and slow running water, usually associated with freshwater springs. Rich submerged vegetation is the prominent ecological feature of all sites in which the species was found. Using as criteria of rarity the limited geographic distribution, the confinement of the species in few localities of each aquatic system and the low local densities, V. letourneuxi can be characterised as a "restricted and locally rare species". The restricted distribution, coupled with the narrow ecological requirements, makes the species vulnerable to extinction. Its disappearance from at least four aquatic systems and the serious population decline in a number of other systems seems to be connected with habitat loss or degradation caused by human activities. The prospects of conservation are discussed

    Mesoscopic Modeling of a Highly-Ordered Sanidic Polymer Mesophase and Comparison With Experimental Data

    Get PDF
    [Image: see text] Board-shaped polymers form sanidic mesophases: assemblies of parallel lamellae of stacked polymer backbones separated by disordered side chains. Sanidics vary significantly with respect to polymer order inside their lamellae, making them “stepping stones” toward the crystalline state. Therefore, they are potentially interesting for studying crystallization and technological applications. Building on earlier mesoscopic models of the most disordered sanidics Σ(d), we focus on the other extreme, near-crystalline order, and develop a generic model that captures a highly ordered Σ(r) mesophase. Polymers are described by generic hindered-rotation chains. Anisotropic nonbonded potentials, with strengths comparable to the thermal energy, mimic board-like monomer shapes. Lamellae equilibrated with Monte Carlo simulations, for a broad range of model parameters, have intralamellar order typical for Σ(r) mesophases: periodically stacked polymers that are mutually registered along their backbones. Our mesophase shows registration on both monomer and chain levels. We calculate scattering patterns and compare with data published for highly ordered sanidic mesophases of two different polymers: polyesters and polypeptoids. Most of the generic structural features that were identified in these experiments are present in our model. However, our mesophase has correlations between chains located in different lamellae and is therefore closer to the crystalline state than the experimental samples
    corecore