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Abstract
We propose a dynamic coarse-graining (CG) scheme for mapping heterogeneous polymer
fluids onto extremely CG models in a dynamically consistent manner. The idea is to use as
target function for the mapping a wave-vector dependent mobility function derived from the
single-chain dynamic structure factor, which is calculated in the microscopic reference system.
In previous work, we have shown that dynamic density functional calculations based on this
mobility function can accurately reproduce the order/disorder kinetics in polymer melts, thus it
is a suitable starting point for dynamic mapping. To enable the mapping over a range of
relevant wave vectors, we propose to modify the CG dynamics by introducing internal friction
parameters that slow down the CG monomer dynamics on local scales, without affecting the
static equilibrium structure of the system. We illustrate and discuss the method using the
example of infinitely long linear Rouse polymers mapped onto ultrashort CG chains. We show
that our method can be used to construct dynamically consistent CG models for homopolymers
with CG chain length N = 4, whereas for copolymers, longer CG chain lengths are necessary.

Keywords: polymer simulations, coarse-graining, dynamics, friction, dynamic density
functional theory, mobility function, dynamic structure factor

(Some figures may appear in colour only in the online journal)

1. Introduction

Mixing polymers of different types is a simple and inexpen-
sive way to create novel materials [1, 2]. However, chemically
different polymers usually do not mix well. Polymeric com-
posite materials therefore tend to be heterogeneous on local
scales and filled with internal interfaces, which largely deter-
mine the resulting material properties [3]. The morphology of
the materials depend on the history, i.e., the way they have been
processed. Understanding the dynamics of polymer kinetics in
inhomogeneous materials is thus crucial if one wants to under-
stand and predict the structure and properties of the resulting
materials.

∗ Authors to whom any correspondence should be addressed.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

Computer simulations are a powerful tool to study soft mat-
ter systems. Due to the large size of the polymers and the even
larger typical length scales of the inhomogeneities, simulations
in full atomistic details are usually not possible, and using
coarse-grained (CG) models instead has a long and success-
ful history [4]. In CG polymer models, monomers or groups
of monomers are lumped into one ‘bead’ of simpler structure.
Generic models offer insight into universal features, and spe-
cific models with parameters adjusted to concrete molecules
are used for quantitative studies. Designing such specific CG
models requires the development of mapping procedures that
allow to derive the parameters of the CG models from the
microscopic static and dynamic features of the target systems
[5–11].

With respect to the static properties of equilibrium systems,
such methods are by now well-established. Various protocols
have been proposed to derive effective potentials of CG models
from microscopic simulations by analyzing local correlations
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or force distributions [9, 10]. In addition, established meso-
scopic concepts such as the Flory Huggins χ-parameter [2],
the statistical segment length [12], or the Maier–Saupe param-
eter [13–15] are used to map microscopic models (or experi-
mental data) on continuum models and then back to extremely
CG particle-based polymer models [16–18]. In the latter case,
the target quantity in the CG parameter optimization is often
the static structure factor, and polymer theories like the random
phase approximation (RPA) or the self-consistent field theory
help to establish the connection between fine-grained and CG
models [19–21].

Motivated by these successes, similar efforts are made to
design mapping and CG methods for polymer dynamics. In the
earliest and still very popular approach [22, 23], the CG model
is simulated by standard molecular dynamics and a single time
scale—e.g., the time scale of diffusion—is used to mapped the
CG system onto the fine-grained system. However, it has been
long known through the work of Mori and Zwanzig [24–26],
that CG has a much more fundamental effect on the structure
of the equations of motion: integrating out degrees of freedom
invariably turns a Hamiltonian system into a dissipative system
with memory. Based on this insight, several recent efforts have
been devoted to deriving generalized Langevin (GLE) mod-
els for polymer melts and solutions, using as target quantities
for the mapping the (absolute or relative) velocity autocorrela-
tion function of the center of mass [27–31] of the molecules.
In most of these systems, whole polymer molecules (typi-
cally relatively small star polymers) were mapped onto single
CG particles. Extending these concepts to CG models that map
polymers on CG chains with multiple sites is far from trivial
[32–34]. One approach that has been rather successful in the
case of oligomer molecules was to integrate over pair mem-
ory kernels and thereby derive dissipative particle dynamics
(DPD) friction constants for monomers [35]—similar to ear-
lier work by Hijon et al who used the Mori–Zwanzig formal-
ism to construct DPD equations for CG particles representing
whole star polymers [36]. However, it is not clear whether this
approach will also work for large molecules, where internal
chain motion is a significant source of memory and friction.
An alternative route that is closer to the static CG strategies
developed for mesoscopic scales would be to use the dynamic
structure factor as a starting point for mapping. Such a strategy
will be explored in the present paper.

We target systems containing polymers of large molecular
weight, i.e., made of thousands of monomers, and CG strate-
gies that map these molecules onto much shorter chains of
soft blobs. The dynamics of such polymers is theoretically
described as an overdamped motion in a background medium
created by the other polymers, e.g., Rouse, Zimm, or repta-
tion dynamics [12]. Successful static CG strategies are based
on ‘theoretically informed’ soft potentials that are derived
from static density functionals [17, 37–45] and reproduce key
quantities such as the χ parameter. Here we take a similar
approach, but use as mesoscopic reference theory the over-
damped dynamic density functional theory (DDFT). The stan-
dard ansatz of such a DDFT equation for polymers has the
form [46–52]

∂ρα (r, t)
∂t

=
∑
β

∇r

[∫
dr′Λαβ

(
r, r′

)
∇r′μβ

(
r′, t

)]
. (1)

Here ρα(r, t) is the local density of component α at the posi-
tion r, the quantity ∇r′μβ(r′, t) is the thermodynamic force
acting on component β at position r′, and Λαβ(r, r′) a non-
local mobility function that accounts, e.g., for chain connec-
tivity effects. Obviously, equation (1) is Markovian and does
not include memory effects. More general versions of (1) that
includes a memory kernel K(r, r′, t) have been proposed by
Semenov [53] and more recently by Müller and coworkers
[54, 55]. Equation (1) represents a Markovian approximation
to the full GLE which accounts for different relaxation times
on different length scales in an effective manner. We will
discuss this in more detail in the next section.

In previous work, we have devised a way to extract
mobility functions in polymer systems in a bottom-up fash-
ion from fine-grained simulations, using as input data the
single chain dynamics structure factor, g(q, t) = 1

N 〈
∑N

n,m=1

eiq·(Rn(t)−Rm(0))〉, where the sum n, m runs over all N monomers
of the chain, and Rn(t) is the position of monomer n at time
t. Knowing g(q, t), one can calculate the rescaled single-chain
mobility [56] in Fourier space as

Λ̂(q) =
1

kBTN2
g(q, 0)G−1(q) g(q, 0) with

G(q) =
q2

N

∫ ∞

0
dt g(q, t). (2)

In a homopolymer mixture containing polymers of type
α (length Nα) in the number concentration cα, the total mobil-
ity function is then given by [56]

Λαβ = δαβ
∑
α

cαN2
αΛ̂

(α). (3)

The generalization to block copolymers is straightforward
[56, 57]. In our previous work, we have shown that a DDFT
(1) based on this approach can accurately reproduce the kinetic
evolution of block copolymer melts after sudden changes of
the χ-parameter, when compared to fine-grained reference
simulations.

These successes suggest that the mobility functions Λ̂(q)
should be a suitable target for dynamic CG schemes that
map fine-grained models to particle-based CG models. In the
present paper, we will investigate this possibility. We will show
that a naive ‘mapping’ based on matching a single time scale
fails to reproduce the kinetics on both local and polymeric
length scales. This can partly be remedied by modifying the
internal polymer dynamics in the CG model. We will present
a simple approach to do so and discuss its limitations.

The remainder of the paper is organized as follows: in the
next section, we briefly discuss the background of the method.
We first introduce the mobility function in some more detail,
and then discuss finite chain length effects and the ensuing
problems with simple time mapping. In section 3, we propose a
method to modify the CG dynamics without affecting the static
properties of the systems and show results for an extremely CG
polymer. We close with a brief summary in section 4.
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2. Background

2.1. Single chain dynamic structure factor and mobility
function

To set the frame, we begin with a brief derivation of
equation (2). It follows the spirit of the derivation pre-
sented in reference [56], but specifically highlights the rela-
tion between the mobility function and the corresponding
single-chain memory kernel. For simplicity, we again consider
homopolymers.

We make two important assumptions. First, we assume
that we can determine the mobility function in a homoge-
neous (compressible) reference system (i.e., it is transferable
to inhomogeneous systems), and second we take a mean-field
approach. We consider a tagged polymer that moves in the
average background potential provided by the other chains
of the reference system. Since the reference system is homo-
geneous, we can write a generalized DDFT equation for the
monomers of the tagged polymer as follows:

∂ρ(s)(r, t)
∂t

= ∇r

∫
dr′

∫ t

−∞
ds K(s)(r − r′, t − s) ∇r′μ

(s)(r′, s),

(4)
which in Fourier space reads

∂ρ(s)(q, t)
∂t

= −q2
∫ t

−∞
ds K(s)(q, t − s) μ(s)(q, s), (5)

(using the convention f(q) =
∫

dr eiq·r f(r) for the Fourier
transform), where μ(s)(q) = VδF(s)/δρ(s)(−q) is derived from
the free energy F(s) of the single tagged chain system.
Equation (4) account for memory effects via the single-chain
memory kernel K(s)(τ ). They do not include corresponding
correlated stochastic currents, but these could be added easily
and would drop out in the next step of the derivation.

The single chain structure factor is then given by
g(q, t) = 1

N 〈ρ(s)(q, t)ρ(s)(−q, 0)〉, where 〈·〉 denotes the thermal
average over chain configurations. This results in the following
equation for g(q, t):

∂g(q, t)
∂t

= −q2

N

∫ t

−∞
ds K(s)(q, t − s) 〈μ(s)(q, s)ρ(s)(−q, 0)〉.

(6)
To calculate μ(s), we linearize the tagged chain free
energy F(s) and expand it in powers of the tagged monomer
density ρ(s)3,

F(s) = const. +
kBT
2N

∑
q

ρ(s)(−q) g−1(q, 0) ρ(s)(q) + · · · . (7)

By truncating this equation at the second order, we implic-
itly assume that the chain conformations stay close to
equilibrium and are not strongly distorted. Taking the
derivative4, μ(s)(q, t) = kBTV

N g−1(q, 0)ρ(s)(q, t), and inserting it

3 In reference [56], the corresponding equation, equation (16), contains an
additional erroneous factor 1/V .
4 In reference [56] (before equation (17)), the factor V is missing.

in equation (6), we obtain

∂g(q, t)
∂t

= −q2kBTV
N

∫ t

−∞
ds K(s)(q, t − s) g−1(q, 0) g(q, s).

(8)
Next we carry out a one-sided Fourier transform in the time
domain

iωg̃(q,ω) − g(q, 0) = −q2kBTV
N

K̃(s)(q,ω) g̃−1(q, 0) g̃(q,ω),

(9)
which finally allows to calculate K̃(s)(q,ω) as

K̃(s)(q,ω) =
N

kBTVq2
(g(q, 0) − iωg̃(q,ω)) g̃−1(q,ω) g(q, 0).

(10)
These equations can easily be generalized to copolymers

containing different types of monomers by replacing ρ and
μ with vectors, and g, K with matrices. We emphasize that
K(s)(q, τ ) represents a single-chain memory kernel, which
describes the self-diffusion of the tagged chain. Wang et al
[54] have recently calculated the collective memory kernel for
incompressible block copolymer melts within the RPA and,
interestingly, obtained essentially the same expression (with
a modification due to the incompressibility condition). The
exact collective memory kernel can be obtained from simula-
tions using a similar expression than (10), with the single chain
structure factor replaced by the collective structure factor. For
the purpose of dynamical mapping, it is more convenient to use
the single chain structure factor as target quantity, since it can
be accessed more easily over the whole range of q vectors even
from fine-grained simulations of very small systems. A sec-
ond advantage is that the single-chain structure factor is much
less affected by dynamic slowdown close to phase transitions,
which may occur due to slow collective critical or near-critical
fluctuations [58]. This makes it easier to justify the Markovian
approximation described below.

In order to derive equation (1) with (2) from equation (8)
with (10), we apply a Markovian approximation [35, 36]
and replace K(s)(q, τ ) by K(s)(q, τ ) ≈ Λ(s)(q)2δ(τ ), where the
single-chain mobility is the integral over the memory kernel

Λ(s)(q) =
∫ ∞

0
dτ K(s)(q, τ ) = K̃(s)(q, 0). (11)

Inserting equation (10), identifying G(q) = q2

N g̃(q, 0) and

rescaling5 via Λ̂ = Λ(s) V
N2 , we recover equation (2). Within the

Markovian approximation, g(q, t) decays exponentially (see
equation (6)): the multiple relaxation times contributing to the
memory kernel are replaced by one effective relaxation time,
which is, however, a function of q. Via this q-dependence, one
still accounts, to some extent, for the spectrum of character-
istic relaxation modes in polymers. As we have seen in our
previous work [56], this seems to be sufficient to reproduce the
ordering/disordering kinetics in melts at a quantitative level.

The mobility function Λ̂(q) can thus be used to characterize
the polymer dynamics in a fine-grained system. Based on this

5 In the corresponding expressions in reference [56] (after (14) and before
(19)) a factor V is missing.
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Figure 1. Rescaled mobility functions Λ̂ for polymer chains with different chain length as indicated. (a) Logarithmic plot versus qRG.
(b) Linear plot versus qa, where a is the statistical segment length. The black solid line shows the theoretical results from reference [57].

insight, we propose to use it as target function for a dynami-
cally consistent mapping of fine-grained systems onto CG sys-
tems. As we shall see in the next subsection, such a mapping
is far from trivial.

2.2. Chain length effects on the mobility function

In a previous publication [57], we have derived an expres-
sion for the single-chain mobility function of ideal infinitely
long chains in the Rouse regime. The result was lengthy and
shall not be repeated here. However, simple expressions were
obtained for the limiting cases of very small or very large
length scales. For homopolymers, we get

qRG →∞ : Λ̂(q) → Dc

kBT
· 0.279 (12)

qRG → 0 : Λ̂(q) ≈ Dc

kBT
·
(

1 − (qRG)2

3

)
, (13)

where RG is the radius of gyration, and Dc the diffusion
constant of the chain.

In CG polymer models, one represents polymers by rel-
atively short, possibly very short chains. This turns out to
have a significant impact on the mobility function. To inves-
tigate the chain length effects, we have carried computer sim-
ulations of spring-bead chains with harmonic bond potentials
and different numbers of beads. Apart from being connected
by bonds, monomers do not interact with each other. They
move according to overdamped Brownian dynamics equations
with a monomer friction constant ζ. To determine the mobil-
ity functions from the simulation data, we first determine the
single chain structure factor g(q, t) from the simulation trajec-
tories and then evaluate the integral G(q) and finally Λ̂ accord-
ing to equation (2), applying an extrapolation procedure as
described in reference [56] if necessary. The results for dif-
ferent chain lengths are presented in figure 1. To normalize the
data, the mobilities are divided by the respective polymer dif-
fusion constants Dc = 1/kBTζN. In figure 1(a), we also show
the theoretical result for infinitely long Rouse polymers [57].

The simulation data agree well with the theory for small
q. At larger q, however, they deviate. Different from Rouse
polymers, the mobility functions of finite chains are nonmono-
tonic. They start from Λ̂(0) = Dc/kBT and first decay, initially
closely following the theoretical curve, but then assume a min-
imum and grow again, until they reach the original value,
Λ̂(q) = Dc/kBT at q →∞. In the small q regime, the curves
for different chain lengths collapse onto each other if plotted
against qRG; in the large q regime, they collapse if plotted as
a function of q only (made dimensionless by multiplying with
the statistical segment length a).

In the DDFT (equation (1)), the asymptotic large q behav-
ior of Λ̂ describes that expected for a fluid of monomers which
move independently with the diffusion constant D0 = Λ̂(∞)N
= 1/kBTζ [51, 59]. Hence, we observe a crossover from a col-
lective ‘chain mobility’ to a ‘monomer mobility’ in chains with
finite length N. The crossover point (the position of the mini-
mum) scales roughly like (qRG)c ∼ N1/3 as a function of chain
length. This seems to suggest that the crossover wavelength is
determined by the average distance d of monomers in the coil,
which is set by the local density, d ∼ ρ1/3 with ρ = N/R3

G. In
the limit of infinite chain length, the crossover point (qRG)c

moves to infinity. However, the value of the bare wavevector
at the crossover, (qa)c, moves to zero for infinite chain length.

The reason why the mobility of the finite chain at large
(qRG) differs from that of the infinite chain can be ratio-
nalized as follows: in the regime 1 � (qRG) � (qRG)c, the
local mobility is dominated by the collective motion of whole
chain portions with a locally scale invariant conformations.
The effective friction of such a ‘wad’ is reduced, compared
to that of a monomer, and can be calculated from its local
self-similar structure [57]. On the other hand, on ultra-short
length scales with (qRG)c � (qRG), the effect of chain connec-
tivity becomes negligible and monomers diffuse individually.
The two regimes (‘wad’ diffusion and monomer diffusion) are
well separated in real polymer systems. However, in CG model
systems of short chains, they move closer to each other and
overlap.

4
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When devising dynamic mapping schemes for such
extremely CG polymers systems that cover kinetic processes,
one is thus faced with a fundamental problem: it is impossible
to accurately represent dynamic processes on both global and
local (‘wad’) length scales with simple time scale matching. If
one uses the time scale of chain diffusion for time mapping,
the time scales of local ordering, e.g., at interfaces, are overes-
timated by a factor of roughly 3.6. On the other hand, if maps
the time scale of local ordering, the global chain diffusion is
underestimated.

We should note that related finite chain length effects are
also observed in the static structure factor, g(q, 0), although
they are much less dramatic: for infinitely long chains,
1/Ng(q, 0) drops from 1 (at q = 0) to zero at large qRG →∞,
whereas it levels off at 1/N for finite chains. In principle, this
can be corrected by an appropriate backmapping procedure
[60], i.e., restoring structure in the CG beads in retrospect.
In the case of the dynamics, a different approach must be
taken.

3. Adapting the CG polymer dynamics on multiple
length scales

We will now propose a way to adjust the CG dynamics of in a
CG polymer system such that it has the same mobility function
than the target system of large polymers over the whole range
of q vectors up to (qRG)c. The idea is slow down the internal
modes, such that the CG monomers effectively have the mobil-
ity of a ‘wad’, without changing the diffusion constant of the
whole chains and the static structure of the chains. To this end,
we have to introduce different friction constants for internal
modes and global diffusion.

3.1. Method

We consider linear Gaussian chains of length N with global
chain friction γ t. Our goal is to devise a modified dynamical
model that allows for different internal friction constants while
not affecting the static behavior of the chain. The diffusion
constant of the whole chain will be kept fixed.

The monomer coordinates are given by Ri(t), and the
total potential is given by U[{Ri}]. Thus the force acting on
monomer i is given by fi = −∇RiU. The center of mass of the
chain is given by Rt(t) = 1

N

∑
iRi and the total force acting on

all monomers is ft(t) =
∑

i fi(t).

3.1.1. Overdamped Brownian dynamics with two friction con-
stants. The simplest ansatz is to introduce two friction con-
stants, one for the center of mass motion of the chain and
one for the relative motion with respect to the center of
mass. We will illustrate this approach using the example of
an overdamped Brownian dynamics. We introduce alternative
coordinates Rt (center of mass) and ri = Ri − Rt (internal
coordinates), i.e.,

∑
i ri = 0. Rewriting the potential energy

as a function of these coordinates, we obtain a new potential
function

Ũ
[
Rt, {ri}

]
= U

[
{Rt + ri}

]
. (14)

To reproduce the identical static averages, the generalized
forces f̃i acting on coordinates Rt, ri are derived from Ũ with
an additional Lagrange multiplier λ (a vector) that accounts
for the constraint

∑
i ri ≡ 0:

f̃t = −∇Rt Ũ =
∑

i

(−∇RiU)
∂Ri

∂Rt
=

∑
i

fi = ft (15)

f̃i = −∇ri

(
Ũ + λ ·

∑
i

ri

)
= fi − λ. (16)

The constraint forces must be chosen such that the constraint is
fulfilled at all times. The dynamical equations are overdamped
Langevin equations

Ṙt = γt f̃t + ξt = γtft + ξt (17)

ṙi = γmf̃i + ξi = γm(fi − λ) + ξi (18)

with inverse friction constants γt and γm. The value of γ t is
chosen such that the chain has the desired diffusion constant.
The value of γm can be used for mapping the dynamics on
short scales. The variables ξt, ξi describe uncorrelated Gaus-
sian noise with mean zero (〈ξα〉 = 0) which satisfy the fluctua-
tion–dissipation relation, i.e., 〈ξt(t)ξt(t

′)〉 = 2kBTγ t1δ(t − t′),
〈ξi(t)ξi(t

′)〉 = 2kBTγm1δ(t − t′), and 〈ξα(t)ξβ(t′)〉 = 0 for
α 
= β. From the constraint

∑
i ri ≡ 0, we derive

∑
iṙi ≡ 0,

which allows to express λ as λ = 1
N (ft +

1
γm

∑
iξi), hence

equation (18) reads

ṙi = γm

(
fi −

1
N

ft

)
+ ξi −

1
N

∑
j

ξ j. (19)

This finally yields the modified equations of motion for
monomers Ri:

Ṙi = γmfi + γt,effft + ηi with γt,eff = γt −
1
N
γm, (20)

where ηi = ξi + (ξt − 1
N

∑
jξ j). Note that ηi is again a cor-

related Gaussian distribution noise with correlation matrix
〈ηi(t)η j(t

′)〉 = 2kBTδ(t − t′)[γmδi j + γ t,eff]. We recover the
regular equations for linear Rouse polymers in the case
γt =

1
N γm.

3.1.2. Generalizations. The above modifications can also be
applied to regular Langevin dynamics (with inertia). For beads
of mass m, we obtain the modified equation of motion

mR̈i = fi − ζmṘi − ζt,effṘt + fR
i (t), (21)

where ζm = γ−1
m , ζt,eff =

1
N γ

−1
t − γ−1

m , and fR
i (t) is a

Gaussian distributed stochastic force with correlation
matrix 〈fR

i (t)fR
j (t)〉 = 2kBT1δ(t − t′)[ζmδi j +

1
N ζt,eff]. As in

equation (19), it can be implemented as a linear combination
of uncorrelated random forces fR

i = θi +
1
N (θt −

∑
jθ j) with

〈θt(t)θt(t′)〉 = 2kBTγ−1
t 1δ(t − t′) and 〈θi(t)θ j(t′)〉 = 2kBTζm

1δ(t − t′).
Extensions to modified dynamical models with more than

one internal friction constants are straightforward. For future
reference, we briefly describe the resulting equations for a

5
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hierarchical model with three friction constants. We sepa-
rate the polymer into two blocks of equal length, A and
B, such that the block A comprises monomers Ri with
i ∈ {1, . . . , N/2} := SA and the block B monomers Ri with
i ∈ {N/2 + 1, . . . , N}=: SB. We distinguish between the
forces fi acting on monomers i, the force ft =

∑
i fi acting

on the whole chain, and the forces fA,B =
∑

i∈SA,B
fi acting on

the individual blocks A and B. As generalized coordinates, we
choose the center of mass Rt of the full chain, the center of
masses rA,B of the blocks relative to Rt, and the coordinates ri

of monomers relative to rA,B. The motion of Rt, rA,B, and ri are
associated with separate inverse friction constants γ t, γb, and
γm. Following the same program as in the previous subsection,
we obtain the following dynamical equations for monomers i
belonging to the block α(i) (α = A, B) (overdamped regime):

Ṙi = γmfi + γb,efffα(i) + γt,effft + ηi (22)

with γb,eff = γb − 2
Nγm, γt,eff = γt =

1
2γb, where the Gaussian

noise is correlated according to

〈ηi(t)η j(t′)〉 = 2kBTδ(t − t′)

×
[
γmδi j + γb,effδα(i),α( j) + γt,eff

]
. (23)

As in the previous examples, it can again be conveniently cal-
culated as a sum over uncorrelated Gaussian noise terms. Sim-
ilar equations can be derived for other distributions of friction
constants.

3.2. Results

To evaluate our proposed approach, we consider an extreme
test case and attempt to map a Rouse polymer onto very short
discrete Gaussian chains (length N). As a preliminary remark,
we note that the asymptotic value of the mobility function
Λ̂(q) in the limit q →∞ is bounded from below by the corre-
sponding value for chains with frozen conformations, where
the chains only move as a whole, i.e. [59, 61] Λ̂(q)frozen =
Dc

kBT
1
N g(q, 0)

q→∞−−−→ Dc
kBT N−1. In order to be able to implement

the limiting behavior of Λ̂(q) for Rouse polymers given by
equation (12), CG chains must thus have a minimum length
of N = 4. Hence we will evaluate CG systems of Gaussian
tetramers. We employ modified dynamics with two friction
constants as described in the previous section, section 3.1.

We first verify that the static behavior of the chain is not
changed by the modified dynamics model. We characterize
the static properties by the static structure factor, i.e., g(q, t) at
t = 0. Figure 2(a) shows the static structure factors g(q, 0) for
the polymer chains moving according to the modified dynam-
ics approaches with two friction constants (γm = Nγ t, Nγ t/16)
and three friction constants (two sets: γb = Nγ t/2, γm = Nγ t

and γb = Nγ t/16, γm = Nγ t/16). The results from traditional
overdamped Brownian simulations are shown as black solid
curves for comparison. The agreement is excellent. Clearly
the modified dynamics approaches do not change the static
behavior of the chain.

Next we calculate the mobility function using the modified
dynamics approach with two friction constants. Figure 2(b)
shows the resulting mobility functions calculated for six

values of inverse relative monomer friction (γm = Nγ t,
Nγ t/2, Nγt/4, Nγt/8, Nγt/16, and Nγ t/32). The parameter γt,
which sets the diffusion constant of the whole chain, is kept
fixed. Additionally shown is the result from traditional simula-
tions (black dashed line), and the theoretical results for Rouse
polymers from our previous paper, reference [57] (black solid
line).

At small qRG (qRG < 2), the relative monomer friction has
no influence on the chain mobility functions. The data fol-
low the theoretical curve for Rouse polymers. The overall
translational motion of the chain dominates at small qRG. At
intermediate and large qRG, the internal relaxation becomes
important. If one decreases γm, the mobility function
decreases. At γm ≈ Nγ t/16, the data for the CG chain match
those of the Rouse polymer. Hence, we can indeed obtain the
target mobility function in modified dynamics simulations by
tuning γm. This is the central message of the present paper.

However, the approach also has limitations. This becomes
apparent when looking at the partial mobility functions for
chain blocks, which is important for dynamical studies of
block copolymer ordering and disordering [56, 57]. To illus-
trate this, we split our ultrashort chain (N = 4) in two sym-
metric blocks A and B of length N = 2 (see section 3.1.2) and
evaluate separately their mobility functions Λ̂AA(q), Λ̂BB(q) as
well as the cross-mobility Λ̂AB(q). The same quantities can
be calculated semi-analytically for Rouse polymers using the
expressions given in our previous work, reference [57].

The results are shown in figure 3. Note that Λ̂AA(q) =
Λ̂BB(q) due to symmetry and we also have Λ̂AB(q) = Λ̂BA(q)
and Λ̂(q) =

∑
αβΛ̂αβ(q). Since Λ̂(q) is known from figure 2,

it suffices to plot the data for Λ̂AA(q) here. The same holds
for the static structure factor gαβ(q). In figure 3(a), we ver-
ify that the latter is not affected by the modified dynamics as
expected. The data for the block mobility functions are given
in figure 3(b). At large qRG, if one decreases γm, the block
mobility function decreases, and the target value (the value for
Rouse polymers) can be matched for γm = Nγ t/16. Different
from the total mobility function Λ̂, however, the block mobil-
ity function Λ̂AA is also affected by γm. In regular dynamics
(γm = γ tN), the behavior at small qRG → 0 roughly matches
that of short chains. However, if one reduces γm, it becomes
smaller and deviates from the target. Hence it is not possible
to match the kinetics of chain blocks on both short and long
length scales in a CG model with such ultrashort chains, if one
uses modified dynamics with two friction constants.

To analyze this in more detail, we inspect the structure of the
block mobility functions. In reference [56], we have derived
the following general expressions for Λ̂αβ(q):

Λ̂AA(q) =
1

4kBTq2N

(
g(q, 0)
τR

+
Δ(q, 0)
τΔ

)
(24)

Λ̂AB(q) =
1

4kBTq2N

(
g(q, 0)
τR

− Δ(q, 0)
τΔ

)
, (25)

where τR = 1
g(q,0)

∫ ∞
0 dt g(q, t), Δ(q, t) = gAA(q, t) + gBB(q, t)

− gAB(q, t) − gBA(q, t), and τΔ = 1
Δ(q,0)

∫ ∞
0 dt Δ(q, t). Since

g(q, 0) andΔ(q, 0) are not affected by γm (shown in figures 2(a)
and 3(a)), the dependence of τR and τΔ on γm will determine

6



J. Phys.: Condens. Matter 33 (2021) 194004 B Li et al

Figure 2. (a) Normalized static structure factors g(q, 0) for chains with length N = 4. Black dashed line shows the results from traditional
overdamped Brownian dynamics simulations, the symbols those from modified dynamics approaches with two inverse friction constants
γm = Nγ t, Nγ t/16 and three inverse friction constants with two sets: (γb = Nγt/2, γm = Nγt) and (γb = Nγt/16, γm = Nγ t/16).
(b) Rescaled mobility functions Λ̂(q) for the same chains from modified dynamics with two friction constants. For comparison the thin
dashed line shows the results from traditional simulations, the thick solid line the theoretical results. For modified dynamics, the inverse
relative monomer friction γm is decreased from top to bottom: γm = Nγ t, Nγ t/2, Nγt/4, Nγt/8, Nγt/16, Nγt/32.

Figure 3. Same as figure 2, but now for the first half block (block A) of the chain. (a) Normalized static structure factors g(q, 0), comparison
of results from traditional dynamics (dashed line) and modified dynamics with different sets of inverse friction constants (symbols).
(b) Corresponding rescaled mobility function, comparison of results from traditional dynamics (dashed line), theory for Rouse polymers
(thick solid line), and modified dynamics with inverse relative monomer friction, from top to bottom: γm = Nγ t, Nγt/2, Nγt/4, Nγt/8,
Nγ t/16, Nγt/32.

the behavior of ΛAA and ΛAB. The time scale τR character-
izes the dynamics of the whole chain, and Δ characterizes the
relaxation dynamics of blocks with respect to each other.

Here we focus on the small qRG regime. Figure 4 shows
the normalized single chain dynamic structure factor g(q, t) (a)
and the quantity Δ(q, t) (b) of the CG chains as obtained from
modified dynamics as a function of the simulation time t at
qRG = 0.5. The inverse monomer friction γm has practically
no effect on the behavior of the single chain dynamic struc-
ture factor, hence the relaxation time τR does not change. For
Δ(q, t), however, the relaxation slows down with decreasing
γm, which results in an increase of τΔ. Combined with the

equations above, we conclude that decreasing γm will lead to a
decrease in ΛAA and an increase in ΛAB. The individual blocks
relax more slowly and the two blocks move more cooperatively
at small qRG if the relative monomer friction is increased.

We have tested whether it is possible to decouple the motion
of blocks at small qRG by using a more versatile modified
dynamics scheme with three friction constants. To this end, we
have adopted the hierarchical model described in section 3.1.2
and introduced an additional inverse block friction constant γb.
Some representative results are shown in figure 5. The black
line shows again the target mobility functions. In this example,
we fix the inverse monomer friction parameter at a large value,

7
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Figure 4. Normalized single chain dynamic structure factor (a) and Δ(q, t) (b) of polymer chain with length N = 4 obtained from modified
dynamics at qRg = 0.5. For both figures the monomer friction constants γm is varied as Nγt, Nγ t/2, Nγt/4, Nγt/8, Nγt/16, Nγt/32.

Figure 5. Mobility functions Λ̂ (a) and Λ̂AA (b) for polymer chains with length N = 4 from modified dynamics with three friction constants.
The black solid line shows the target function, the mobility function for Rouse polymers. For modified dynamics, the inverse total friction
constant γ t and the inverse relative monomer friction γm = Nγt/16 are kept fixed, and the inverse block friction parameter γb decreases
from top to bottom: Nγt/2, Nγt/4, Nγt/8, Nγt/16, Nγt/32.

γm = Nγ t/16, such that relative monomer motions are largely
suppressed, and vary the inverse block friction constant γb is
varied. As can be seen from figure 5, introducing the hierar-
chical scheme with three friction constants does not improve
the quality of the mapping. At the level of the block mobili-
ties, the problems persist, and even the mapping of the total
mobility function (figure 5(a)) is not as good as in the sys-
tem with two friction constants (figure 3). We have explored
all possible parameter combinations of γb and γm and did not
obtain any better results. Hence we conclude that dynamic
mapping of block copolymers onto tetramers is not possible,
and longer CG chains must be used to model such systems.
Given that the chain length N = 4 is the minimum chain length
for homopolymer mapping as explained at the beginning of
this section, it is perhaps not surprising that it is too small to
map individual blocks.

4. Summary and conclusion

To summarize, in this paper, we have presented a dynamic
CG scheme for polymer systems with the goal of mapping
the time scales of local kinetic processes over a large range of
relevant length scales. The scheme builds on the single-chain
mobility matrix, a wave-vector dependent integrated quantity
that is derived from the single-chain structure factor. We have
demonstrated that mobility functions can be used as sensitive
diagnostic tools that highlight the quality of dynamic map-
ping schemes for polymers on different length scales. As an
example, we have used them to evaluate extreme CG schemes
that map long Rouse polymers onto CG chains with very
few effective monomers, and shown that simple time scale
matching fails for large wavevectors q. The reason is that in
short chains, the motion of different monomers decouples for

8
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large qRG, whereas the dynamics remains cooperative in Rouse
polymers. As a remedy, we have proposed a class of modified
CG dynamics schemes where the relative motion of monomers
is artificially slowed down, and shown that this can greatly
improve the quality of dynamic mapping of homopolymers,
even if the length of the CG chains is as short as N = 4.

We have also investigated the limitations of the method.
For homopolymers, we have established by analytical consid-
erations that N = 4 is the minimum CG chain length where
consistent dynamic mapping is possible. In the case of block
copolymers, this still seems too short and dynamic mapping of
symmetric diblock copolymers onto tetramers was not possi-
ble. We found that slowing down the monomers increases the
dynamic correlation between the different blocks in an unde-
sired way, and it was not possible to find dynamical param-
eters that reproduce the mobility matrix function Λ̂αβ(q) in
a satisfactory manner over the whole range of q vectors for
CG chains with N = 4. We conclude that dynamically consis-
tent ‘extreme’ CG of block copolymers onto CG requires either
further modifications or less extreme CG (i.e., larger N). When
respecting these limitations, we believe that our scheme can
have a wide range of interesting applications. We have tested
it on linear Rouse polymers, but it can also be applied to poly-
mers in other dynamic regimes, e.g., entangled polymers, and
to other polymer architectures.

Our dynamic CG scheme is motivated by a Markovian
approximation to the dynamics (equation (1)) that does not
explicitly account for memory effects in polymer dynamics.
Mapping strategies that target the full frequency dependent
mobility matrix of the GLE, e.g., equation (10), should be
even more accurate. However, it will likely not be possible
to implement them without introducing frequency dependent
mobility coefficients at the level of the CG model as well [34],
which would greatly reduce the efficiency of CG simulations.
On the other hand, CG simulations based on modified dynam-
ics, e.g., equations (20) or (21), are not much more expensive
than regular CG simulations, as they neither require additional
force evaluations, nor extra efforts (storage of data, auxiliary
variables) to account for memory kernels [29]. The approach
can additionally be motivated by the observation that polymer
DDFTs based on the Markovian approximation—when using
wave-vector dependent (i.e., nonlocal) mobility functions as
in equation (1)—were found to reproduce kinetic processes
in inhomogeneous polymer systems fairly accurately on time
scales well below the Rouse time [56]. We have studied this
for chains in the Rouse regime, corresponding investigations
of other dynamical regimes are currently under way.

A large number of different internal friction constants can
be introduced following the methods introduced in section 3.1
and adjusted in order to optimally match the target mobility
function. In the present work, we have mapped the parameters
by straightforward trial and error. In the future, it will be desir-
able to develop more sophisticated iterative mapping schemes
[62–64] and/or apply machine learning tools [31] to optimize
the mapping. We believe that such developments will enable
for dynamically accurate large scale simulations of kinetic pro-
cesses in inhomogeneous polymer systems by use of extremely
CG polymer models.
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