295 research outputs found

    On periodic homeomorphisms of spheres

    Full text link
    The purpose of this paper is to study how small orbits of periodic homemorphisms of spheres can be.Comment: Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol1/agt-1-22.abs.htm

    Acute Sets of Exponentially Optimal Size

    Get PDF
    We present a simple construction of an acute set of size (Formula presented.) in (Formula presented.) for any dimension d. That is, we explicitly give (Formula presented.) points in the d-dimensional Euclidean space with the property that any three points form an acute triangle. It is known that the maximal number of such points is less than (Formula presented.). Our result significantly improves upon a recent construction, due to Dmitriy Zakharov, with size of order (Formula presented.) where (Formula presented.) is the golden ratio. © 2018 Springer Science+Business Media, LLC, part of Springer Natur

    The local atomic quasicrystal structure of the icosahedral Mg25Y11Zn64 alloy

    Full text link
    A local and medium range atomic structure model for the face centred icosahedral (fci) Mg25Y11Zn64 alloy has been established in a sphere of r = 27 A. The model was refined by least squares techniques using the atomic pair distribution (PDF) function obtained from synchrotron powder diffraction. Three hierarchies of the atomic arrangement can be found: (i) five types of local coordination polyhedra for the single atoms, four of which are of Frank-Kasper type. In turn, they (ii) form a three-shell (Bergman) cluster containing 104 atoms, which is condensed sharing its outer shell with its neighbouring clusters and (iii) a cluster connecting scheme corresponding to a three-dimensional tiling leaving space for few glue atoms. Inside adjacent clusters, Y8-cubes are tilted with respect to each other and thus allow for overall icosahedral symmetry. It is shown that the title compound is essentially isomorphic to its holmium analogue. Therefore fci-Mg-Y-Zn can be seen as the representative structure type for the other rare earth analogues fci-Mg-Zn-RE (RE = Dy, Er, Ho, Tb) reported in the literature.Comment: 12 pages, 8 figures, 2 table

    The Fermat-Torricelli problem in normed planes and spaces

    Full text link
    We investigate the Fermat-Torricelli problem in d-dimensional real normed spaces or Minkowski spaces, mainly for d=2. Our approach is to study the Fermat-Torricelli locus in a geometric way. We present many new results, as well as give an exposition of known results that are scattered in various sources, with proofs for some of them. Together, these results can be considered to be a minitheory of the Fermat-Torricelli problem in Minkowski spaces and especially in Minkowski planes. This demonstrates that substantial results about locational problems valid for all norms can be found using a geometric approach

    A chemogenomic screening identifies CK2 as a target for pro-senescence therapy in PTEN-deficient tumours

    Get PDF
    Enhancement of cellular senescence in tumours triggers a stable cell growth arrest and activation of an antitumour immune response that can be exploited for cancer therapy. Currently, there are only a limited number of targeted therapies that act by increasing senescence in cancers, but the majority of them are not selective and also target healthy cells. Here we developed a chemogenomic screening to identify compounds that enhance senescence in PTEN-deficient cells without affecting normal cells. By using this approach, we identified casein kinase 2 (CK2) as a pro-senescent target. Mechanistically, we show that Pten loss increases CK2 levels by activating STAT3. CK2 upregulation in Pten null tumours affects the stability of Pml, an essential regulator of senescence. However, CK2 inhibition stabilizes Pml levels enhancing senescence in Pten null tumours. Taken together, our screening strategy has identified a novel STAT3-CK2-PML network that can be targeted for pro-senescence therapy for cancer

    Study of the electrochemical behaviour of a 300 W PEM fuel cell stack by Electrochemical Impedance Spectroscopy

    Full text link
    Electrochemical Impedance Spectroscopy (EIS) is a suitable and powerful diagnostic testing method for fuel cells because it is non-destructive and provides useful information about fuel cell performance and its components. In this work, EIS measurements were carried out on a 300 W stack with 20 elementary cells. Electrochemical impedance spectra were recorded either on each cell or on the stack. Parameters of a Randles-like equivalent circuit were fitted to the experimental data. In order to improve the quality of the fit, the classical Randles cell was extended by changing the standard plane capacitor into a constant phase element (CPE). The effects of output current, cell position, operating temperature and humidification temperature on the impedance spectra were studied.This work was supported by Generalitat Valenciana (PROMETEO/2010/023).PĂ©rez Page, M.; PĂ©rez Herranz, V. (2014). Study of the electrochemical behaviour of a 300 W PEM fuel cell stack by Electrochemical Impedance Spectroscopy. International Journal of Hydrogen Energy. 39(8):4009-4015. https://doi.org/10.1016/j.ijhydene.2013.05.121S4009401539

    Montecarlo based quantitative Kramers-Kronig test for PEMFC impedance spectrum validation

    Full text link
    Electrochemical Impedance Spectroscopy (EIS) is a very powerful tool to study the behaviour of electrochemical systems. At present, it is widely used in the fuel cell field in order to study challenging cutting edge issues as membrane drying or gas diffusion layer flooding amongst others. The proper analysis of impedance data requires the fulfilment of four fundamental conditions: causality, linearity, stability and finiteness. The non compliance with any of these conditions may lead to biased, or even misguided, conclusions. Therefore it is critical to verify the compliance of these conditions before accepting any analysis performed on an experimental spectrum. This is even more important in a fuel cell experimental spectrum analysis, since fuel cells are markedly non stationary systems. The aim of this work is to establish an impedance spectrum quantitative validation technique to validate the whole experimental spectrum and to identify the individual points within a spectrum that do not comply any of the four conditions, in order to remove these inconsistent points from the analysis. The designed validation method consists in a Kramers Kronig (KK) validation test, by equivalent electrical circuit fitting, coupled with a Montecarlo error propagation method. In a first step, the experimental spectrum is fitted to a particular electrical equivalent circuit, which satisfies the KK relations. Then, in a second step, a statistical Montecarlo method is used in order to propagate the model fitting parameter uncertainty through the model. Using this approach, a consistency region is built for a given confidence level: the experimental points inside this region are considered consistent for the given confidence level, whereas the outside points are rejected. The method was used on PEMFC experimental impedance spectra; and it successfully managed to identify inconsistent points, associated to no stationarities.The authors are very grateful to the Generalitat Valenciana for its economic support in form of Vali+d grant (Ref: ACIF-2013-268).Giner Sanz, JJ.; Ortega Navarro, EM.; PĂ©rez-Herranz, V. (2015). Montecarlo based quantitative Kramers-Kronig test for PEMFC impedance spectrum validation. International Journal of Hydrogen Energy. 40(34):11279-11293. https://doi.org/10.1016/j.ijhydene.2015.03.135S1127911293403
    • …
    corecore