58 research outputs found

    Unconstrained face identification with multi-scale block-based correlation

    Get PDF

    Shallow Unorganized Neural Networks Using Smart Neuron Model for Visual Perception

    Get PDF
    The recent success of Deep Neural Networks (DNNs) has revealed the significant capability of neural computing in many challenging applications. Although DNNs are derived from emulating biological neurons, there still exist doubts over whether or not DNNs are the final and best model to emulate the mechanism of human intelligence. In particular, there are two discrepancies between computational DNN models and the observed facts of biological neurons. First, human neurons are interconnected randomly, while DNNs need carefully-designed architectures to work properly. Second, human neurons usually have a long spiking latency (∼100ms) which implies that not many layers can be involved in making a decision, while DNNs could have hundreds of layers to guarantee high accuracy. In this paper, we propose a new computational model, namely shallow unorganized neural networks (SUNNs), in contrast to ANNs/DNNs. The proposed SUNNs differ from standard ANNs or DNNs in three fundamental aspects: 1) SUNNs are based on an adaptive neuron cell model, Smart Neurons, that allows each artificial neuron cell to adaptively respond to its inputs rather than carrying out a fixed weighted-sum operation like the classic neuron model in ANNs/DNNs; 2) SUNNs can cope with computational tasks with very shallow architectures; 3) SUNNs have a natural topology with random interconnections, as the human brain does, and as proposed by Turing’s B-type unorganized machines. We implemented the proposed SUNN architecture and tested it on a number of unsupervised early stage visual perception tasks. Surprisingly, such simple shallow architectures achieved very good results in our experiments. The success of our new computational model makes it the first workable example of Turing’s B-Type unorganized machine that can achieve comparable or better performance against the state-of-the-art algorithms

    Digital video source identification based on green-channel photo response non-uniformity (G-PRNU)

    Get PDF
    This paper proposes a simple but yet an effective new method for the problem of digital video camera identification. It is known that after an exposure time of 0.15 seconds, the green channel is the noisiest of the three RGB colour channels [5]. Based on this observation, the digital camera pattern noise reference, which is extracted using only the green channel of the frames and is called Green-channel Photo Response Non-Uniformity (G-PRNU), is exploited as a fingerprint of the camera. The green channels are first resized to a standard frame size (512x512) using bilinear interpolation. Then the camera fingerprint is obtained by a wavelet based denoising filter described in [4] and averaged over the frames. 2-D correlation coefficient is used in the detection test. This method has been evaluated using 290 video sequences taken by four consumer digital video cameras and two mobile phones. The results show G- PRNU has potential to be a reliable technique in digital video camera identification, and gives better results than PRNU

    EEG-based Deep Emotional Diagnosis: A Comparative Study

    Get PDF
    Emotion is an important part of people's daily life, particularly relevant to the mental health of people. Emotional diagnosis is closely related to the nervous system, which can well reflect people's mental conditions in response to the surrounding environment or the development of various neurodegenerative diseases. Emotion recognition can help the medical diagnosis of mental health. In recent years, emotion recognition based on EEG has attracted the attention of many researchers accompanying with the continuous development of artificial intelligence and brain computer interface technology. In this paper, we carried out a comparison on the performance of three deep learning techniques on EEG classification, including DNN, CNN and CNN-LSTM. DEAP data set was used in our experiments. EEG signals were transformed from time domain to frequency domain first, and then features are extracted to classify emotions. From our research, it shows these deep learning techniques can achieve good accuracy on emotional diagnosis

    Assisted Diagnosis of Cervical Intraepithelial Neoplasia (CIN)

    Get PDF
    This paper introduces an automated computer- assisted system for the diagnosis of cervical intraepithelial neoplasia (CIN) using ultra-large cervical histological digital slides. The system contains two parts: the segmentation of squamous epithelium and the diagnosis of CIN. For the segmentation, to reduce processing time, a multiresolution method is developed. The squamous epithelium layer is first segmented at a low (2X) resolution. The boundaries are further fine tuned at a higher (20X) resolution. The block-based segmentation method uses robust texture feature vectors in combination with support vector machines (SVMs) to perform classification. Medical rules are finally applied. In testing, segmentation using 31 digital slides achieves 94.25% accuracy. For the diagnosis of CIN, changes in nuclei structure and morphology along lines perpendicular to the main axis of the squamous epithelium are quantified and classified. Using multi-category SVM, perpendicular lines are classified into Normal, CIN I, CIN II, and CIN III. The robustness of the system in term of regional diagnosis is measured against pathologists' diagnoses and inter-observer variability between two pathologists is considered. Initial results suggest that the system has potential as a tool both to assist in pathologists' diagnoses, and in training

    Towards Advancing the Earthquake Forecasting by Machine Learning of Satellite Data

    Get PDF
    Earthquakes have become one of the leading causes of death from natural hazards in the last fifty years. Continuous efforts have been made to understand the physical characteristics of earthquakes and the interaction between the physical hazards and the environments so that appropriate warnings may be generated before earthquakes strike. However, earthquake forecasting is not trivial at all. Reliable forecastings should include the analysis and the signals indicating the coming of a significant quake. Unfortunately, these signals are rarely evident before earthquakes occur, and therefore it is challenging to detect such precursors in seismic analysis. Among the available technologies for earthquake research, remote sensing has been commonly used due to its unique features such as fast imaging and wide image-acquisition range. Nevertheless, early studies on pre-earthquake and remote-sensing anomalies are mostly oriented towards anomaly identification and analysis of a single physical parameter. Many analyses are based on singular events, which provide a lack of understanding of this complex natural phenomenon because usually, the earthquake signals are hidden in the environmental noise. The universality of such analysis still is not being demonstrated on a worldwide scale. In this paper, we investigate physical and dynamic changes of seismic data and thereby develop a novel machine learning method, namely Inverse Boosting Pruning Trees (IBPT), to issue short-term forecast based on the satellite data of 1371 earthquakes of magnitude six or above due to their impact on the environment. We have analyzed and compared our proposed framework against several states of the art machine learning methods using ten different infrared and hyperspectral measurements collected between 2006 and 2013. Our proposed method outperforms all the six selected baselines and shows a strong capability in improving the likelihood of earthquake forecasting across different earthquake databases

    A Multipopulation-Based Multiobjective Evolutionary Algorithm

    Get PDF
    Multipopulation is an effective optimization component often embedded into evolutionary algorithms to solve optimization problems. In this paper, a new multipopulation-based multiobjective genetic algorithm (MOGA) is proposed, which uses a unique cross-subpopulation migration process inspired by biological processes to share information between subpopulations. Then, a Markov model of the proposed multipopulation MOGA is derived, the first of its kind, which provides an exact mathematical model for each possible population occurring simultaneously with multiple objectives. Simulation results of two multiobjective test problems with multiple subpopulations justify the derived Markov model, and show that the proposed multipopulation method can improve the optimization ability of the MOGA. Also, the proposed multipopulation method is applied to other multiobjective evolutionary algorithms (MOEAs) for evaluating its performance against the IEEE Congress on Evolutionary Computation multiobjective benchmarks. The experimental results show that a single-population MOEA can be extended to a multipopulation version, while obtaining better optimization performance
    • …
    corecore