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Abstract: Manual measurement of mouse behavior is highly labor intensive and prone to error. This investigation aims 
to efficiently and accurately recognize individual mouse behaviors in action videos and continuous videos. In 
our system each mouse action video is expressed as the collection of a set of interest points. We extract both 
appearance and contextual features from the interest points collected from the training datasets, and then 
obtain two Gaussian Mixture Model (GMM) dictionaries for the visual and contextual features. The two 
GMM dictionaries are leveraged by our spatial-temporal stacked Fisher Vector (FV) to represent each mouse 
action video. A neural network is used to classify mouse action and finally applied to annotate continuous 
video. The novelty of our proposed approach is: (i) our method exploits contextual features from spatio-
temporal interest points, leading to enhanced performance, (ii) we encode contextual features and then fuse 
them with appearance features, and (iii) location information of a mouse is extracted from spatio-temporal 
interest points to support mouse behavior recognition. We evaluate our method against the database of Jhuang 
et al. [7] and the results show that our method outperforms several state-of-the-art approaches. 
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1 INTRODUCTION 

Mice are extensively employed in biomedical science and their responses to disease or therapy are frequently 
detected by measurement of their behavior patterns. In most cases this monitoring is performed manually using 
video recordings. Recording of diverse behaviors of home-cage mice generates a large amount of information for 
researchers [1, 2] in pathology, psychology, ethology, neuroscience and medicine. However, manual annotation 
of mouse recordings is a highly labor intensive process which is error-prone and subject to individual 
interpretation. Furthermore, human observers may fail to detect behavioral events that are very quick or too slow, 
and humans may miss events because of dwindling attention span. 

In the literature some systems which automatically recognize animal behaviors have been described. For 
instance, Rousseau et al. [9] were the first to show that the detection of specific behaviors was possible. They 
applied neural network techniques to recognize 9 solitary rat behaviors from body shape and position, recorded 
from the side-view. However, their method of tracking the nose is not sufficiently developed to draw conclusions 
concerning its sensitivity and reliability. In 2005 Dollár et al. [4] recognized mouse behavior using the 
classification of sparse spatio-temporal features. However, they only considered visual features of the interest 
points (e.g. image gradient) without the contextual information such as the spatial relationship between different 
interest points. In 2010 Jhuang et al. [7] used background subtraction to get a subwindow of the mouse in each 
frame from the side-view. From the mouse subwindow, the features that they used were generated based on a 
computational model of motion processing in the human brain [22], followed by classification using a Hidden 
Markov Model Support Vector Machine (SVMHMM). Their method to locate the mouse is dependent on a good 
background model, which it turns out can be problematic. Recently, Burgos-Artizzu et al. [10] created a system 
for recognizing the social behavior of mice, both from the top and side views. They applied AdaBoost with spatio-
temporal and trajectory features to classify mouse behaviors. As with the method of Dollár et al. [4], this method 
also ignored the spatio-temporal contextual features. Furthermore, their trajectory features are based on a tracking 
algorithm which was not detailed in their paper.  

A common feature of all of the above studies is that the location information of mice is computed by tracking 
[9, 10] or detection [7] algorithms. Also, their extracted features are derived from studies of human behavior 
recognition, such as spatio-temporal, trajectory and shape features [7, 9, 10]. Low-level local features have 
become popular in action recognition due to their robustness to background noise and independence of the 
detection and tracking algorithms. Among these local features, spatio-temporal interest points [4, 12] and 
Improved Dense Trajectories (IDT) [3, 21] are widely used because of their ease of use and good performance. 
Spatio-temporal interest points are used by some systems [4, 12] to extract visual features around interest points, 
but contextual features also imply a large amount of information about spatial location and temporal changes of 
the mouse. 

In our system, we propose to exploit contextual features of interest points, which also potentially describe 
mouse location without using an independent tracking or detecting algorithm. These features are then encoded as 
spatial-temporal stacked Fisher vectors which are the input to the neural network. The main contributions of this 
study are:  

1. We improve upon the performance of Dollar’s interest point detector especially under illumination using 
frame differencing and Laplacian of Gaussian filtering. 

2. We explore new contextual features from the spatio-temporal interest points for behavior recognition. It is 
the first attempt to encode this contextual feature rather than simply concatenate them after appearance features 
like [7], [10] and [12]. Our contextual features are an important feature which can characterize both spatial location 
and temporal changes in mice. We compute the absolute and relative positions of each interest point and then 
concatenate them to form the contextual features. 

3. We compute spatial-temporal stacked Fisher vectors for both contextual and visual features that help 
improve behavior recognition accuracy. We generate two GMM dictionaries for contextual and visual features 
respectively and then compute spatial-temporal stacked Fisher vectors for each of them. 

4. We conduct a comprehensive evaluation of the proposed algorithm, and compare it with several state-of-
the-art techniques. 

 
2    FRAMEWORK OF OUR APPROACH 

As shown in Fig. 1 the pipeline for our method consists of five steps: (i) detection of interest points, (ii) description 
of interest points, (iii) generation of two Gaussian Mixture Model (GMM) dictionaries, (iv) feature encoding with 
spatial-temporal stacked Fisher vector (FV), and (v) classification with a neural network (NN). In the following 
sections, we will describe each step in more detail. 
 



 
Figure 1. The proposed framework. 

 
Figure 2.  Some examples of detected interest points (depicted by red dots) in a 3D spatio-temporal volume. 

 

2.1     Detection of interest points  

Interest points are local spatio-temporal features considered to be salient or characteristic of the action captured 
in a 3D spatio-temporal volume (see Fig. 2). Spatio-temporal interest points are those points where the local 
neighborhood has a significant variation in both the spatial and the temporal domains. Laptev [12] extended the 
2D Harris corner detector to 3D. However the main drawback of this method is the relatively small number of 
stable interest points. Willems et al. [23] identify saliency as the determinant of a 3D Hessian matrix, which is 
faster and denser than Harris 3D but less dense than Dollar’s detector. Another trend is to use dense sampling [3], 
which extracts video blocks at regular positions and scales in space and time. Obviously dense sampling is able 
to produce many more interest points than the above detector. However, it is more difficult to ensure that all 
interest points are on the object. Among various interest point detection methods, the one proposed by Dollar et 
al. [4] is perhaps the most suitable for mouse action recognition. They calculate a response function to locate 
interest points. The response function has the form [4]: 
 
𝑹𝑹 = (𝑰𝑰 ∗ 𝒈𝒈 ∗ 𝒉𝒉𝒆𝒆𝒆𝒆(𝒕𝒕))𝟐𝟐 + (𝑰𝑰 ∗  𝒈𝒈 ∗ 𝒉𝒉𝒐𝒐𝒐𝒐(𝒕𝒕))𝟐𝟐 (1) 

 
where g is the 2D Gaussian smoothing kernel which is applied only along the spatial dimensions, and 𝒉𝒉𝒆𝒆𝒆𝒆 and 
𝒉𝒉𝒐𝒐𝒐𝒐 are a quadrature pair of 1D Gabor filters applied temporally, defined as: 
 𝒉𝒉𝒆𝒆𝒆𝒆(𝒕𝒕; 𝝉𝝉,𝒘𝒘) = −𝒄𝒄𝒐𝒐𝒄𝒄(𝟐𝟐𝝅𝝅𝒕𝒕𝒘𝒘)𝒆𝒆−𝒕𝒕𝟐𝟐/𝝉𝝉𝟐𝟐, and 𝒉𝒉𝒐𝒐𝒐𝒐(𝒕𝒕; 𝝉𝝉,𝒘𝒘) = −𝒄𝒄𝒔𝒔𝒔𝒔(𝟐𝟐𝝅𝝅𝒕𝒕𝒘𝒘)𝒆𝒆−𝒕𝒕𝟐𝟐/𝝉𝝉𝟐𝟐. 

Despite this method’s popularity, since it uses solely local information within a small region, it is prone to 
false detection under illumination variation; it also tends to generate spurious interest points around highly 
textured background areas. Some drawbacks are highlighted in the examples in Fig. 3. 



 

 

 
Figure 3. Comparison between interest points detected using our detector (bottom) and the Dollar detector (top) under 
illumination change. 

To overcome these shortcomings, we propose here a different interest point detector. In particular, although the 
1-D Gabor filter applied in the temporal domain is effective for capturing the dynamics of actions, it is sensitive 
to both illumination and highly textured background. To overcome this problem, the proposed detector explores 
different filters for detecting salient spatio-temporal interest points. More specifically, our detector consists of two 
steps: 1) Laplacian of the Gaussian filtering in the spatial domain replacing single Gaussian in Dollar et al. [4] for 
reducing the influence of illumination and 2) frame differencing for eliminating spurious interest points on the 
background. This two-step approach facilitates saliency detection in both the temporal and spatial domains to give 
a combined filter response. Hence our response function has the form:  
 

𝑹𝑹 = (𝑰𝑰 ∗ 𝒈𝒈 ∗ 𝑳𝑳 ∗ 𝒉𝒉𝒆𝒆𝒆𝒆(𝒕𝒕))𝟐𝟐 + (𝑰𝑰 ∗  𝒈𝒈 ∗ 𝑳𝑳 ∗ 𝒉𝒉𝒐𝒐𝒐𝒐(𝒕𝒕))𝟐𝟐 
(2) 

 
in which L is the operator of Laplace used on the space. Due to introduction of the Laplace operator, our interest 
points detector can effectively reduce the influence of illumination, followed by frame differencing for ensuring 
all interest points are on the mouse. Fig. 3 also shows that, under the same illumination change, our detector can 
extract more precise interest points on the mouse. 

 

2.2 Contextual and visual features      

2.2.1 Spatio-temporal contextual feature extraction 

Most existing mouse behavior recognition systems [7, 9, 10] extract position features from established trackers. 
However these tracking algorithms do not seem to be very reliable. For example, Jhuang et al. [7] used background 
subtraction to get a subwindow of the mouse in each frame, but their foreground detection algorithm assumes the 
background is constant, which cannot be guaranteed in a real experiment. Besides, trajectory features extracted 
by Burgos-Artizzu et al. [10] are from their undetailed tracking algorithm, and the mouse nose tracking algorithm 
applied by Rousseau et al. [9] seems insensitive and unreliable. Unlike their approach, we propose a novel method 
to extract contextual information from the detected interest points, which also imply the location of the mouse 
without using any extra mouse tracking or detection algorithm. 

Our spatio-temporal contextual information of interest points is an important action representation, because 
they characterize both spatial location and temporal changes of the mouse. There are two types of features that 
are computed: the relative position, and absolute spatial position of interest points. The position of each interest 
point in the 3D spatio-temporal volume is represented by its XYT coordinates. Fig. 2 intuitively shows the 
distribution of interest points. Suppose there are R interest points detected in an action video. In order to compute 
relative positions, we firstly compute a center interest point defined by: [𝑿𝑿𝒄𝒄;𝒀𝒀𝒄𝒄;𝑻𝑻𝒄𝒄] = 𝟏𝟏

𝑹𝑹
∗ ∑ [𝑿𝑿𝒔𝒔;𝒀𝒀𝒔𝒔;𝑻𝑻𝒔𝒔]𝑹𝑹

𝒔𝒔=𝟏𝟏 , where 



[𝑿𝑿𝒄𝒄;𝒀𝒀𝒄𝒄;𝑻𝑻𝒄𝒄]and [𝑿𝑿𝒔𝒔;𝒀𝒀𝒔𝒔;𝑻𝑻𝒔𝒔] represent the coordinates of the center and the ith interest point respectively in 
an action video. Consequently, the relative position of interest points is represented by the coordinates of 
R interest points relative to the center interest point: 𝑷𝑷𝒔𝒔 = [𝑿𝑿𝒔𝒔 − 𝑿𝑿𝒄𝒄;  𝒀𝒀𝒔𝒔 −  𝒀𝒀𝒄𝒄;  𝑻𝑻𝒔𝒔 − 𝑻𝑻𝒄𝒄], 𝒔𝒔 = 𝟏𝟏,𝟐𝟐, … ,𝑹𝑹. 
         Using relative position efficiently describes the distribution in the 3D spatio-temporal volume, because it 
concentrates on different behavior patterns while ignoring outliers. The absolute spatial position of each interest 
point is able to characterize the place where the action happens (which can be important for location-based 
behaviors such as drinking). To capture this information, we concatenate the XY coordinates to the relative 
position. Overall, the contextual feature vector has the form: 𝑭𝑭𝒔𝒔 = [𝑿𝑿𝒔𝒔 − 𝑿𝑿𝒄𝒄;  𝒀𝒀𝒔𝒔 −  𝒀𝒀𝒄𝒄;  𝑻𝑻𝒔𝒔 − 𝑻𝑻𝒄𝒄;  𝑿𝑿𝒔𝒔 ;  𝒀𝒀𝒔𝒔], 𝒔𝒔 =
𝟏𝟏,𝟐𝟐, … ,𝑹𝑹. 

2.2.2 Spatio-temporal visual feature extraction 

After detecting the interest points, we extract the visual features (see Fig. 4) from the cuboids around the interest 
points in the 3D spatio-temporal volume. For simplicity, we extract the brightness gradients with three channels 
(G_x, G_y, G_t) from each cuboid and flatten the cuboid into a vector as [4]. To eliminate noise and retain some 
principle information, Principle Component Analysis (PCA) is used to reduce the dimensionality of the visual 
feature vector. 

2.3 Generation of GMM dictionaries for contextual and visual features 

The aim of dictionary generation is to describe the local feature space and provide a partition for local descriptors 
[19]. In some existing mouse behavior systems [4, 10], a mouse action is modeled as a bag of independent and 
unordered visual words; however, the spatio-temporal contextual information of interest points is ignored. In these 
approaches, the k-means clustering algorithm is used to construct the dictionary. In our work, instead of k-means, 
we use Gaussian Mixture Model (GMM), which is a probabilistic model to characterize the distribution of the 
given feature space.  
        For each type of dictionary, we suppose a K-component GMM, and each Gaussian k has the form [6]: 
 

𝒖𝒖𝒌𝒌 =
𝟏𝟏

(𝟐𝟐𝝅𝝅)𝑫𝑫/𝟐𝟐�|𝜮𝜮𝒌𝒌|
𝒆𝒆𝒆𝒆𝒆𝒆�−

𝟏𝟏
𝟐𝟐

(𝒆𝒆 −   𝝁𝝁𝒌𝒌)𝑻𝑻

∑ (𝒆𝒆 − 𝝁𝝁𝒌𝒌)𝒌𝒌
� 

 
(3) 

 
where 𝝁𝝁𝒌𝒌  and 𝜮𝜮𝒌𝒌  are the D dimension of mean vector and diagonal covariance matrix respectively, 𝒌𝒌 =
𝟏𝟏,𝟐𝟐, … ,𝑲𝑲. Then the GMM can be defined as: 
 

𝒆𝒆(𝒆𝒆;𝜽𝜽) = �𝝎𝝎𝒌𝒌𝒖𝒖𝒌𝒌(𝒆𝒆;𝝁𝝁𝒌𝒌,𝜮𝜮𝒌𝒌)
𝑲𝑲

𝒌𝒌=𝟏𝟏

 
 

(4) 

 
where 𝜽𝜽 = {𝝎𝝎𝒌𝒌,𝝁𝝁𝒌𝒌,𝜮𝜮𝒌𝒌,𝐤𝐤 = 𝟏𝟏, … ,𝐊𝐊} , 𝝎𝝎𝒌𝒌 is the mixture weight of Gaussian 𝒖𝒖𝒌𝒌  and subject to ∀𝒌𝒌:𝝎𝝎𝒌𝒌 ≥
𝟎𝟎,∑ 𝝎𝝎𝒌𝒌 = 𝟏𝟏𝑲𝑲

𝒌𝒌=𝟏𝟏 .  
Given the feature set 𝐗𝐗 = {𝒆𝒆𝟏𝟏, … ,𝒆𝒆𝑴𝑴} , we apply the Expectation-Maximization (EM) algorithm to 

optimize parameters of GMM, which is learned through maximum likelihood [13].  
There are two benefits in our approach with two dictionaries: (1) The two dictionaries consider both 

contextual and visual features of interest points. (2) Unlike k-means, GMM delivers not only the mean information 
of code words, but also the shape of their distribution. 

2.4 Feature encoding and fusion 

Feature encoding aims to leverage the dictionary to integrate all local descriptors into a feature vector, which can 
ensure all video clips have the same dimension of feature vector, and efficiently improve classification 
performance. Although feature encoding and fusion are very important procedures in mouse action recognition, 
related papers discussing this are rare.  For example, [4] and [12] only use the traditional encoding method of 
Vector Quantization. For feature fusion, some existing mouse behavior recognition systems [7, 9, 10] simply 
append positional features after appearance features without encoding. In our opinion, appearance features and 
contextual features are two different kinds of feature and vary in value range. So it is more reasonable to encode 
them separately. In recent evaluations [14, 17, 18], the Fisher Vector performs consistently better than bag of 
features, where it is popular to encode features for both image and video classification. We also apply this 
encoding method and show that it can improve the performance of our features as well (see section 4.1). Unlike 
bag of features, Fisher Vector leverages GMM as its dictionary for encoding more information than the mean of 
code words. It calculates the gradient of the log-likelihood with respect to a parameter of GMM, which can 



describe how that parameter contributes to the process of generating a particular example [6]. Let 𝑋𝑋 = {𝑥𝑥𝑛𝑛 , n =
1 …𝑁𝑁} be the set of N descriptors of interest points in an action video. Then this video can be represented by the 
gradient vector of log likelihood [15]: 

𝑮𝑮𝜽𝜽𝑿𝑿 =
𝟏𝟏
𝑵𝑵
𝛁𝛁𝜽𝜽𝒍𝒍𝒐𝒐𝒈𝒈𝒆𝒆(𝑿𝑿;𝜽𝜽) 

  
(5) 

 
where 𝑝𝑝(𝑋𝑋; 𝜃𝜃) = ∏ 𝑝𝑝(𝑥𝑥𝑛𝑛; 𝜃𝜃)𝑁𝑁

𝑛𝑛=1  and 𝜃𝜃  is the parameter of this function. This is a generative model to 
characterize an action video with a gradient vector derived from a probability density function. On the basis 
of this generative model, Perronnin et al. [6] introduced the GMM to replace the probability density function 
𝑝𝑝(𝑥𝑥𝑛𝑛; 𝜃𝜃) and developed an improved Fisher vector as follows: 

𝓖𝓖𝝁𝝁,𝒌𝒌
𝑿𝑿 =

𝟏𝟏
𝑵𝑵�𝝎𝝎𝒌𝒌

�𝜰𝜰𝒔𝒔(𝒌𝒌) �
𝒆𝒆𝒔𝒔 − 𝝁𝝁𝒌𝒌
𝝈𝝈𝒌𝒌

�
𝑵𝑵

𝒔𝒔=𝟏𝟏

 
 
 

(6) 

𝓖𝓖𝝈𝝈,𝒌𝒌
𝑿𝑿 =

𝟏𝟏
𝑵𝑵�𝜔𝜔𝑘𝑘

�𝜰𝜰𝒔𝒔(𝒌𝒌)[
(𝒆𝒆𝒔𝒔 − 𝝁𝝁𝒌𝒌)𝟐𝟐

𝝈𝝈𝒌𝒌𝟐𝟐
− 𝟏𝟏]

𝑵𝑵

𝒔𝒔=𝟏𝟏

 
 
 

(7) 
 
where 𝜎𝜎𝑘𝑘2 has D dimensions and represents the diagonal covariance matrices, i.e. the diagonal of 𝜮𝜮𝒌𝒌. In other 
words, 𝓖𝓖𝝁𝝁,𝒌𝒌

𝑿𝑿  and 𝓖𝓖𝝈𝝈,𝒌𝒌
𝑿𝑿  are the D-dimensional gradients with respect to the mean 𝝁𝝁𝒌𝒌 and standard deviation 𝝈𝝈𝒌𝒌 of 

Gaussian k. Eqs. (6) and (7) are the mathematical derivations of Eq. (4) replacing the 𝑝𝑝(𝑥𝑥𝑛𝑛; 𝜃𝜃) of GMM. In 
addition, 𝜰𝜰𝒔𝒔(𝒌𝒌) is the weight of 𝑥𝑥𝑛𝑛to the kth Gaussian: 
 

𝜰𝜰𝒔𝒔(𝒌𝒌) =
𝝎𝝎𝒌𝒌𝒖𝒖𝒌𝒌(𝒆𝒆𝒔𝒔;𝝁𝝁𝒌𝒌,𝜮𝜮𝒌𝒌)

∑ 𝝎𝝎𝒌𝒌𝒖𝒖𝒌𝒌(𝒆𝒆𝒔𝒔;𝝁𝝁𝒌𝒌,𝜮𝜮𝒌𝒌)𝑲𝑲
𝒌𝒌=𝟏𝟏

 
 

(8) 
 

If we suppose there are K Gaussians and D dimensions of a descriptor after performing PCA in our system, then 
the Fisher vector is the concatenation of 𝓖𝓖𝝁𝝁,𝒌𝒌

𝑿𝑿  and 𝓖𝓖𝝈𝝈,𝒌𝒌
𝑿𝑿  with a total of 2KD vector dimensions, which describes 

how the parameters of the generative model 𝑝𝑝(𝑋𝑋; 𝜃𝜃) should be modified to better fit the data X.  

 
Figure 4. Spatial-temporal stacking  

In our approach, as mentioned in section 2.2, we have two GMM dictionaries, one for visual and the other for 
contextual features, so we can compute two Fisher vectors for both of them. Note that local sum-pooling, which 
is in the form of (6) and (7), is agnostic to the relative location of aggregated features. To capture the spatial-
temporal structure within each feature’s neighborhood, inspired by spatial stacking of [11], we incorporate the 
stacking sub-layer, which concatenates the spatial-temporal adjacent features in the 2*2*2 cuboid which 
encompasses all the detected interest points (Fig. 4). After normalizing these spatial-temporal stacked Fisher 
vector by power and L2 normalization, we fuse contextual and appearance Fisher vectors to give the input to the 
classifier. In particular, contextual and appearance are complementary features, and they jointly boost the 
performance of the classifier (see Section 4.2). 

2.5 Classification with a neural network 

In our study, the fusion FV of contextual and visual features is the final feature vector which needs to be classified. 
Although FV are designed to work well with a linear classifier (because they correspond to the explicit feature 
map of the Fisher Kernel), we still wanted to understand whether FV classification could be improved with non-
linear classifiers. Perronnin et al. [16] recently gave a positive answer for image classification. In our experiment, 
we also apply a non-linear classifier and find that a combination of neural networks and Fisher vectors can give 
better results than the conventional combination of Fisher vector and linear support vector machine (SVM). In 
our approach, a feed-forward neural network was constructed with two layers of sigmoid hidden neurons and 
softmax output neurons. The feed-forward neural network allows the one-way transmission of the data from input 



to output. The hidden layer was fed with the fused and normalized Fisher Vector of contextual and visual features. 
In each layer, the input is weighted and transformed by an activation function (sigmoid in the hidden layer and 
softmax in the output layer) and is then passed to the neurons in the next layer.  

3    EXPERIMENTAL SETUP 

3.1     Benchmark experiment 

To quantify the improvement obtained by our spatio-temporal visual and contextual features, we compared our 
method first to the state-of-the-art approach using Trajectory Features proposed by Wang et al. [21], because it 
has been a popular action representation in recent years, albeit for human behaviors. 

3.1.1 Spatio-temporal visual and contextual features 

The interest point detector used in this experiment was proposed by Dollar et al. [4]. For parameter setting, the 
spatial and temporal scale parameters σ and τ are empirically set to 2 and 3, respectively. After detecting the 
interest points, we extract XYT relative and absolute locations of each interest point. Afterwards we construct a 
visual feature vector using brightness gradients from cuboids, which are centered on the interest points and have 
default size 13*13*19. To eliminate noise and retain some principle information, Principle Component Analysis 
(PCA) is then used to reduce the dimensionality of visual feature vector by preserving 98% of the energy. 

3.1.2 Trajectory features 

Improved Dense Trajectories (IDT) [21] is another widely used local feature. This approach densely samples 
points in each frame.  Tracking points are achieved using optical flow. We used the default trajectory length of 
15 frames. For each trajectory, we computed descriptors of Trajectory, HOG, HOF and MBH [20]. The Trajectory 
descriptor describes its shape by a sequence of displacement vectors. The other descriptors are computed in the 
spatio-temporal volume aligned with the trajectory. HOG represents the static appearance information by the 
orientation of image gradients. Both HOF and MBH measure motion information, and are based on optical flow. 
HOF directly quantizes the orientation of flow vectors. MBH quantizes the derivatives by splitting the optical 
flow into horizontal and vertical components. The final dimensions of the descriptors are 30 for Trajectory, 96 for 
HOG, 108 for HOF and 192 for MBH. 

3.2     Feature encoding and classification 

To encode features, we compared bag of features and Fisher vector.  We used 1500 randomly sampled features 
with k-means to train a codebook for each descriptor type including HOG, HOF, MBH, spatio-temporal visual 
and contextual features. The size of the codebook is set to K=50. Unlike bag of features, Fisher vector [6] encodes 
both first and second order statistics between the video descriptors and a Gaussian Mixture Model (GMM). In 
order to estimate the GMM for each descriptor, we randomly sample 1500 features from the training set and set 
the number of Gaussians to K=20. Each descriptor type has 2KD dimensional Fisher vector as described in [6]. 
To normalize a Fisher vector, we apply power and L2 normalization as in [6]. Finally we concatenate normalized 
Fisher vectors of different descriptor types and compare the performance of different combinations of them. 

For classification, we use neural network (NN), linear SVM, radial basis function SVM and K-nearest 
neighbor (kNN) for comparing the performance of the trajectory features with our spatio-temporal features. For 
parameter settings of each classification method, we fix the number of hidden nodes in NN to 100, use a one-
against-the-rest strategy for designing multi-class classification of SVM and set K=1 in kNN. For the other 
parameters, we follow the default setup in Matlab. After the experiments, we choose the best results as the 
evidence of the comparison and analysis. In all experiments we divided all datasets into two parts: half is used for 
training and half for testing. Additionally, to evaluate our system on continuous videos, we used leave-one-out 
procedure on a frame-by-frame comparison with human ground truth. During the leave-one-out procedure, all 
except one video are used to train a neural network and the trained neural network was used to test the one 
remaining video. The procedure is repeated n times for all videos and the average performance is reported. 

3.3     Datasets 

The Jhuang database [7] was used for our experimental test. The first type of database called the ‘clipped database’ 
contains 4200 clips in which only the best instances of specific behaviors are included. This dataset is the largest 
of the current publicly available datasets.  It consists of eight mouse behavior classes: rear (399 cases), groom 



(1477), eat (374), drink (61), hang (521), rest (868), walk (233) and head (180). Each clip records a single mouse 
from a side-view camera. The second database denoted as the ‘full database’ involves 12 frame-by-frame labeled 
videos lasting over 10 hours in total. In order to make the recognition system more robust during the training 
process, they varied the camera angles and lighting conditions. They also used many mice of different size, gender, 
and coat color in experiments. In this paper, experiments of 4.1, 4.2, 4.3 and 4.4 are measured on the ‘clipped 
database’ using a half-by-half cross-validation procedure. The ‘full database’ is used to train and test our system 
evaluated by a leave-one-out strategy in the last experiment. 

4    EXPERIMENTAL RESULTS 

4.1     Comparison with trajectory features 

In this section, we evaluated the performance of our visual features (VF) and contextual features (CF) using 
different feature encoding methods, compared with the state-of-the-art IDT features approach. Table 1 compares 
the final performance of the different features. In Table 1, we can observe that the combined features have better 
accuracy than just one. However, for IDT features, trajectory shapes seem not to be suitable for mouse behavior 
recognition. The reason may be that differences between behaviors can be subtle, and the trajectory shape may 
not give enough fine detail. The results also show that IDT features without trajectory shapes have better 
performance than with trajectory shapes (93.4% vs 92.6%). Furthermore, a Fisher vector representation always 
results in a better performance than bag of features for each type of feature and combined features. Taking all the 
results together it is clear that visual features and contextual features give best results and their combination 
provides the best overall accuracy (95.9% compared with 93.4% for IDT features. 

Table 1. Comparison of the performance (accuracy %) of IDT features and spatio-temporal features 

Features BOF+NN     FV+linear SVM     FV+NN 
 

IDT 
Trajectory 69.1%  73.6%  73.3% 
HOG  84.8%  91.6%  91.9% 
HOF  77.2%  83.2%  84.9% 
MBH  79.3%  87.9%  89.5% 
Combined  
with trajectory 85.5%  91.9%  92.6% 
Combined  
without  
trajectory 88.5%  92.3%  93.4%

 
Spatio-temporal  
Visual features  87.3%  91.4%  91.3% 
Contextual  
features  89.4%  92.2%  93.0% 
Combined 93.1%  95.4%  95.9% 

4.2     Evaluation of spatio-temporal visual and contextual features on specific behaviors 

Table 2 compares the performance of spatio-temporal visual and contextual features for specific behaviors. This 
experiment is tested on the same feature encoding and classification (FV+NN). In Table 2, we see that, except for 
“walk”, “head” and “groom”, the contextual features seem to result in better accuracy. The possible explanation 
is that the contextual features are more effective for distinguishing behaviors which are more localized, such as 
“eat”, “drink”, “rear” and “hang”. These often happen near the feeder, tube, wall and ceiling respectively. 
Although the interest points of “groom”, “walk”, “rest”, “groom” and “head” can happen at any place except the 
ceiling, each behavior has a particular distribution in both the spatial and temporal domains. So this contextual 
distribution can also contain evidence to help distinguish behaviors. However in the ROC curve (see Fig. 5) of 
contextual features, the performance for “head” is obviously worse than for other behaviors.  “Head” is easily 
confused with   similar spatio-temporal contextual and visual information. The small proportion of “drink” in the 
dataset also influences the final accuracy; it is reasonable to suppose that if we had more “drink” action videos 
for training (see section 4.4), the accuracy would be greatly improved. We also note that the combined features 
are able to achieve significantly higher accuracy for each behavior than either the contextual and visual features 
on their own. Fig. 6 shows the confusion matrix for the combined features for more detail.  



Table 2. Comparison of the performance (accuracy %) of visual features, contextual features and their combination. 

Action  visual  contextual combined 
           features          features     features 

rear  83.1%  84.0%        94.9% 
groom    96.2%  96.2%                  97.4% 
eat      76.8%  87.5%                  95.7% 
drink      56.3%  84.8%                   72.4% 
hang      93.6%  96.3%                   97.6% 
rest      98.8%  99.1%                   99.5% 
walk      98.2%  96.5%                   98.3% 
head      64.5%  61.5%                   69.8% 
all      91.3%  93.0%        95.9% 
 

 
Figure 5. The ROC curve of visual features visual features, contextual features and their combination. 

 

Figure 6. The confusion matrix for the combination of visual and contextual features. The diagonal cells show the number and 
percentage of correct classifications. The non-diagonal cells contain the number and percentage of incorrectly classified 
behaviors. The proportion of each actual behavior that were correctly or incorrectly predicted is shown in the bottom row. The 
proportion of each predicted behavior that were correct or incorrect is shown in the rightmost column. Overall, the proportion 
of correct predictions is shown in the bottom right corner. 

 

 



Table 3. Comparison of results (accuracy %) using different encoding methods and classifiers 

Classification IDT  IDT  our ST  
  (no trajectory) (with trajectory)   

 
FV + NN 93.4%  92.6%  95.9% 
FV +  
linear SVM 92.3%  91.9%  95.4% 
FV +  
RBF SVM 90.7%  88.6%  91.1% 
BOF+NN 88.5%  85.5%  93.1% 
BOF+kNN 79.4%  78.4%  90.9% 
BOF+ 
linear SVM 87.1%  86.8%  92.4% 
BOF +  
RBF SVM 85.9%  84.7%  92.7% 

 

Table 3 shows that our combined ST features always outperform the IDT features using different combinations 
of encoding methods and classifiers. The table also shows that the combination of FV and NN or linear SVM 
appears to achieve higher accuracy for both combined IDT features and combined ST features. Moreover, the 
combination of FV+NN, FV+linear SVM and BOF+NN have better results than the others. The results also 
suggest that the performance of FV+NN is a little better than FV+linear SVM which is used to classify IDT 
features in [21]. Typically the selection of the SVM kernel is based on experience. However, NN seems to be 
more robust to different encoding methods, because regardless of the features and encoding method used in our 
experiment the NN generally outperforms the other classifiers.  

4.4      Comparison with state-of-the-art 

In this section we compare our method to the method proposed by Dollar et al. [4] and Wang et al. [21] for each 
specific mouse behavior. We use the same validation strategy (half-by-half) for each state-of-the art method and 
compare the results in Table 4. Interestingly, all methods, including ours, struggle to recognize “drink” and “head”. 
In particular, the method proposed by [21] achieves very low accuracy (5%). The most likely reason is that “drink” 
and “head” have only a small proportion of the training set (1.5% and 4.3% respectively). We also see that the 
trajectory features including trajectory shapes and descriptors used by [21] cannot correctly represent “drink” 
behavior, because their interest points detecting method (Improving Dense trajectory) struggles to detect useful 
feature points from the drinking mouse which maintains its posture but uses only its mouth (see Fig. 2). Overall, 
our method significantly outperforms the current state-of-the-art methods for each specific mouse behavior. In 
terms of the final accuracy our method has an improvement of 13.7%, 3.6% and 2.9% over [4], [21] and [7], 
respectively. 

Table 4. Comparison of accuracy with state-of-the-art methods 

Action   Dollar [4]    Wang [21]    our method    Jhuang[7]    
 

rear       57.9% 89.7%        94.9%       - 
groom        88.4% 96.2%        97.4%       - 
eat       69.0% 88.8%        95.7%               - 
drink       41.0% 5.0%          72.4%               - 
hang       80.8% 96.9%        97.6%               - 
rest       98.8% 95.8%        99.5%               - 
walk       96.1% 97.0%        98.3%               - 
head       32.2% 64.8%        69.8%               - 
all       82.2% 92.3%        95.9%               93% 

4.5      Continuous video annotation 

To annotate continuous videos, sliding windows are centered at each frame and both appearance features and 
contextual features are computed inside them. Once spatio-temporal features are computed for all the sliding 
windows, Fisher vector is then computed for each frame by focusing on a sliding window centered in the current 
frame. These fisher vectors are finally classified by a trained neural network and their classification results are 
regarded as labels of all the frames. To explore an optimal sliding window size, we establish an experiment to 
compare the percentage agreements with human annotation using different sliding window sizes, illustrated in 



Figure 7. 

 
Figure 7. Continuous video annotation with different window sizes. 

5    CONCLUSION 

This paper has presented a new approach to automatically recognizing specific mouse behaviors. We show that 
our interest detector is stable under illumination. Our appearance and contextual fusion features encoded by 
spatial-temporal stacked fisher vector significantly outperform the other state-of-the-art features. Also, the 
combination of Fisher vector and neural networks improves the performance of our system and gives higher 
accuracy than the other state-of-the art systems. Overall, our method achieves an average of 95.9% accuracy 
compared to the previous best test of 93%. Final experiments on annotation of continuous video also obtain results 
(72.9%) that are on a par with human annotation, which is evaluated as 71.6% in [7]. Future work will include 
exploring more distinguishing features, combining temporal model and extending the range of behaviors.  We 
also plan to study social behavior between multiple mice. 
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