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Highlights  

 An AdaBoost-based ensemble framework is proposed to forecast earthquake 

 Infrared and hyperspectral global data between 2006 and 2013 are investigated 

 The framework shows a strong capability in improving earthquake forecasting 

 Our framework outperforms all the six selected baselines on the benchmarking datasets 

 Our results support a Lithosphere-Atmosphere-Ionosphere Coupling during earthquakes   
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Abstract 

Earthquakes have become one of the leading causes of death from natural hazards in the last fifty years. 

Continuous efforts have been made to understand the physical characteristics of earthquakes and the 

interaction between the physical hazards and the environments so that appropriate warnings may be 

generated before earthquakes strike. However, earthquake forecasting is not trivial at all. Reliable 

forecastings should include the analysis and the signals indicating the coming of a significant quake. 

Unfortunately, these signals are rarely evident before earthquakes occur, and therefore it is challenging to 

detect such precursors in seismic analysis. Amongst the available technologies for earthquake research, 

remote sensing has been commonly used due to its unique features such as fast imaging and wide image-

acquisition range. Nevertheless, early studies on pre-earthquake and remote-sensing anomalies are mostly 

oriented towards anomaly identification and analysis of a single physical parameter. Many analyses are 

based on singular events, which provide a lack of understanding of this complex natural phenomenon 

because usually, the earthquake signals are hidden in the environmental noise. The universality of such 

analysis still is not being demonstrated on a worldwide scale. In this paper, we investigate physical and 

dynamic changes of seismic data and thereby develop a novel machine learning method, namely Inverse 

Boosting Pruning Trees (IBPT), to issue short-term forecast based on the satellite data of 1,371 earthquakes 

of magnitude six or above due to their impact on the environment. We have analyzed and compared our 

proposed framework against several states of the art machine learning methods using ten different 

infrared and hyperspectral measurements collected between 2006 and 2013. Our proposed method 

outperforms all the six selected baselines and shows a strong capability in improving the likelihood of 

earthquake forecasting across different earthquake databases. 

Keywords 

Earthquake forecasting; Earthquake precursors; Machine learning; Infrared and hyperspectral parameters  
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1. Introduction 

Over 500,000 earthquakes are recorded per year. Many of these are undetected or unnoticed because 

of their small magnitude, while others cause devastation to buildings, bridges and mountains. Earthquake 

damage mitigation is an active topic in geological research. The majority of earthquakes occur due to the 

sudden release of stress in the earth’s crust that gradually builds up from tectonic movement. However, the 

response of the crust to the changing stress is non-linear and is dependent on the compression capability of 

the crust, which is highly variable and complex (Council 2003). Satellite remote sensing enables us to detect 

large-range and continuous changes of the near-surface thermal field (Frick and Tervooren 2019; Niu et al. 

2012; Ouzounov et al. 2006; Pulinets et al. 2006; Tramutoli et al. 2005; Tronin 2007). It can be utilized to 

monitor thermal anomalies caused in the process of earthquake preparation, which provides useful hints 

learnt from the measurements for short term and imminent forecasting of earthquakes. Moreover, some 

researchers believed that thermal anomalies might be related to the variation in the composition of 

atmospheric gas mixtures above the near-surface fault (Pulinets and Ouzounov 2018). Micro-fractures of 

rock and surface within earthquake regions may expand due to the intensification of pre-earthquake 

tectonic activities, which helps release underground high-concentration gas, such as H2, CO, O3, CO2 and 

water vapour to space, and produce additional atmospheric electricity, which stimulates the infrared 

electromagnetic radiation (Liperovsky et al. 2011). 

Existing studies mainly aim at abnormality identification and analysis of a single physical parameter 

or a specific earthquake; the results of analyzing abnormalities are short of universal, and cannot 

confidently explain the pre-earthquake multi-parameter anomalies. In recent years, in order to study the 

pre-earthquake multi-parameter anomalies from the perspective of the energy balance of the Earth, Pulinets 

and Ouzounov have revised the physical model of lithosphere-atmosphere-Ionosphere-coupling (LAIC) 

(Ouzounov et al. 2018a; Pulinets and Ouzounov 2011; Wu et al. 2012) which explains the synergy of different 

physical processes and variations, known as short-term pre-earthquake anomalies. Other scholars modify 
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LAIC into lithosphere-coversphere-atmosphere (LCA) concept supporting a wide range of remote sensing 

applications (Wu et al. 2012). It has been pointed out that the effect of seismic crustal stress enables 

mechanical energy to be transformed to heat energy, and then transmitted to the earth surface through 

pores in rocks and tiny pre-earthquake ruptures, resulting in enhancement of stress in the rock mass and 

increase of surface temperature in strike-slip parts. At the same time, the local stress enhancement and the 

occurrence of micro-earthquakes can cause numerous micro-cracks and micro-fractures inside the 

lithosphere, so that the geo- gases and fluids within the lithosphere, such as H2, Rn, CO, O3, CO2, and water 

vapour, would spill out along these channels. The increase of geo-gases in the atmosphere stimulates 

physical processes and chemical reactions from the ground surface up to the troposphere. Along with the 

effect of electric fields, it stimulates the infrared electromagnetic radiation, and the atmospheric temperature 

may increase, which can be measured by satellites (Pulinets and Ouzounov 2018). 

With in-depth studies on the LCA coupling model as well as accumulation and utilization of pre-

earthquake satellite multi-parameters (Ouzounov et al. 2018a; Wu et al. 2012), some correlation analysis of 

multi-parameters has been carried out (Table S1). Singh et al. analyzed abnormal variations of sea surface 

temperature (SST), surface latent heat flux (SLHF), atmospheric temperature and humidity before the 

earthquake occurred in Sumatra, Indonesia on December 26, 2004 (Singh et al. 2007) and the Wenchuan 

earthquake on May 12, 2008 (Singh et al. 2010); it was considered that there was a strong land-ocean-

atmosphere coupling before earthquakes. Rawat et al. compared anomalies of temperature and long-wave 

radiation before the earthquakes happened in India and Romania (Rawat et al. 2011). Wu et al. summarized 

the studies of pre-earthquake anomalies before the earthquake hit L'Aquila, Italy on 22 October 2012, where 

they selected the parameters of the lithosphere, coversphere, atmospheric and ionized layers to study 

abnormal synchronization and coupling mechanisms (Wu et al. 2016). Jingfeng et al. studied the abnormal 

synchronization of multi-parameters such as the latent heat flux, long-wave radiation, atmospheric 

temperature, humidity and pressure before the Wenchuan Earthquake in 2008 (Jing et al. 2013). Qin et al. 
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utilized multiple satellite parameters to analyze thermal anomalies before the New Zealand Earthquake in 

2010-2011, and they studied the physical mechanism behind the earthquake thermal anomaly by 

investigating the regional tectonics, hydrogeology and meteorological environment (Qin et al. 2012). They 

also proposed the deviation-timespace-thermal method to analyze the spatiotemporal synchronicity and 

inherent mechanism among multi-parameters of various thermal anomalies and ionospheric anomalies 

before the 6.7 magnitude’s earthquake occurred in Pu'er (Qin et al. 2013b) and Yushu (Qin et al. 2013a). 

Ouzounov et al. tested (retrospectively and prospectively) a new approach of integrated satellite and 

terrestrial framework (ISTF) for detecting atmospheric pre-earthquake signals. The approach is based on a 

sensor web of coordinated analysis between three physical parameters validated by the LAIC model: OLR 

(satellite), dTEC (electron concentration in the ionosphere), and atmospheric chemical potential 

(atmospheric assimilation models). ISTF has been applied for three major earthquakes: M 6.0 Napa of 2014 

(USA), M 6.0 Taiwan of 2016, and M 7.0 Kumamoto, Japan of 2016. Molchan’s error diagram (MED) for all 

parameters shows results that are better than random guesses. Prospective tests based on 22 earthquakes 

over Japan (2014-15) revealed the existence of general temporal-spatial evolution pattern in the atmosphere 

ahead of the main earthquakes only in cases when a multi‐parameter analysis been used (Ouzounov et al. 

2018b).  

However, the above studies have two several constraints such as (1) earthquake studies are still limited 

in space and time, and (2) the methodology for multi parameters analysis is non uniform and therefore 

cannot meet the requirements of the practice of earthquake monitoring. Moreover, the applications of 

anomaly-evaluation applied to specific earthquakes often are with lack of understanding of the underlying 

physics, which may cause various or even contradictory conclusions for the same earthquake (Blackett et 

al. 2011a, b). 

With the rapid development of artificial intelligence and machine learning, researchers have made 

progress in the domain of earth sciences (Sarkar and Mishra 2018), especially in earthquake forecasting 
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(Asencio–Cortés et al. 2018; Asim et al. 2018a, b; Bergen et al. 2019; Hulbert et al. 2018; Lubbers et al. 2018; 

Rafiei and Adeli 2017; Reyes et al. 2013; Rouet-Leduc et al. 2018). At the same time, machine learning are 

also very effective for spatial remote sensing data handling (Du et al. 2020). For example, artificial 

intelligence technology may provide a useful measure for resolving those problems mentioned above. In 

this paper, a novel Inverse Boosting Pruning Trees (IBPT) based framework is presented for earthquake 

forecasting, which utilizes satellite data with ten parameters such as infrared sensing, hyperspectral 

imaging and gas sensing signals collected from worldwide earthquakes during 2006 and 2013. Our 

proposed method aims to be a general-purpose technology, using the labels generated by time series 

clustering techniques. This technology simplifies the process of forecasting because the proposed method 

deals with the sequences of labels instead of real data itself. Four datasets of earthquakes with different 

magnitudes, collected between 2006 and 2013, are used to forecast earthquakes and compared against other 

state of the art techniques. 

2. Data and processing 

2.1 Datasets 

Considering the research results reported in the literature (Jing et al. 2013; Qin et al. 2013a; Qin et al. 

2012; Qin et al. 2013b; Rawat et al. 2011; Singh et al. 2007; Singh et al. 2010; Wu et al. 2016) and published 

data, without loss of generality, according to the lithosphere-coversphere-atmosphere (LCA) coupling 

model (Ouzounov et al. 2018b; Pulinets and Ouzounov 2011; Wu et al. 2012), we selected ten parameters 

for the earthquake anomaly analysis. Figure S1 shows the inherent relations between the selected ten 

parameters. These parameters were generated from two different satellite data sources (Table S2). The first 

nine parameters as shown in Table S2 were created from the Atmospheric Infrared Sounder (AIRS) on 

NASA's spacecraft Aqua and the engaged parameters are recorded with 1.0 × 1.0° resolution, with the 

frequency of twice per day.  
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Specifically, surface skin temperature, temperature of the atmosphere at the earth's surface, water 

vapour mass mixing ratio at the surface, total integrated column ozone burden, retrieved total column co, 

retrieved total column CH4, ARIS outgoing longwave radiation flux, and clear-sky outgoing longwave 

radiation flux can be obtained from the AIRS3STD v6 product (L3 Standard Daily Product processed using 

only AIRS radiances in Version 6), and land surface temperatures is from the AIRX3SPD v6 product (L3 

Support Daily Product processed using AIRS and AMSU radiances in Version 6), which retrieved from 

MODIS averaged over MYD11C3 (MODIS/Aqua Land-Surface Temperature/Emissivity Monthly Global 

0.05Deg CMG) 0.05 degree (~5 km) pixels. The last parameter was obtained from the National Oceanic and 

Atmospheric Administration (NOAA) Climate Forecasting Center web site (ftp ftp.cpc.ncep.noaa.gov ; cd 

precip/noaa* for OLR directories), which provided original gridded daily Outgoing Longwave Radiation 

(OLR) data from NCAR with temporal interpolation. The OLR algorithm for analyzing the Advanced Very 

High-Resolution Radiometer (AVHRR) data is proposed by Gruber and Krueger (Gruber and Krueger 1984), 

which integrates the IR data with the wavelengths between 10 and 13 μm. The data is mainly sensitive to 

the near surface and/or cloud temperatures. The two data sources provide abundant observation data, and 

all the ten parameters are of the same spatial resolution and time scales. This study covers worldwide events, 

including land and submarine earthquakes. In total, 1,234 earthquakes with magnitudes between 6 and 7, 

and 137 earthquakes with magnitude 7 and over, are recorded in the study area, which is spread over the 

period between 2006 and 2013. In order to verify the reliability and improve the robustness of the proposed 

model, we generate 1,371 artificial non-earthquake events, the same amount as the real earthquakes, and 

stagger the time and place to match when and where the real earthquakes occur. As can be seen, there are 

millions of measurement values in this study. 

We look at the temporal features that are extracted within N days before an earthquake occurs, and 

attempt to detect earthquake anomalies during these days. As reported by Tronin et al., anomalies are 

observed around 6 ~ 24 days before an earthquake strikes (Gorny et al. 2020). Given that there is no universal 
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standard for the temporal window, we set the temporal window to be 30 by default in our study and 

determine the best temporal window in the experiments. The spatial feature is M degrees away from the 

epicenter where the earthquake occurs. By analyzing the NOAA and Moderate Resolution Imaging 

Spectroradiometer (MODIS) images before earthquakes, Ouzounov et al. found that thermal anomalies 

occur approximately 2.5° away from the epicenter (Ouzounov et al. 2007). Again, since there is not any 

agreed standard, the square region with its center at the epicenter and a deviation of 3° was selected as the 

spatial feature in our study. 

2.2. Features generation 

The original satellite data is in a format that is not appropriate for the proposed algorithm to proceed 

and requires data preprocessing. The first task to be completed is to split the dataset: each dataset is carefully 

split into two contiguous pieces: 80% for training models, which is 01 January 2006 to 12 May 2012, and 20% 

for testing purposes and final evaluation, which is from May 12, 2012, until December 25, 2013. The next 

step is the normalization of data, which is used for the clustering process, the normalization of the datasets 

needs to be conducted to reduce or eliminate data redundancy, Z-Score normalization was performed on 

the training data, and normalizing the test data with the normalizing parameters used for training data. 

Moreover, satellite data is affected by factors such as satellite payload interference and space environment, 

which can cause occasional errors in continuous data. In our study, we use a “sliding time window” 

implementation combined with time series clustering techniques (Petitjean et al. 2011) to take overlapping 

5-days windows in the time series (separated by a 1-day time lag) features, which ensures that there is a 

coincidence between the formed series, but also avoids the error of continuous single-point data and has 

stable robustness. 

2.2.1 Standard features’ generation 
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For the purpose of comparison, we generate standard features. Firstly, we choose the well-known 

scalable K-means algorithm (Lloyd 1982) to classify the data set, the K-means algorithm requires that the 

user provides the number of clusters to be created. However, this number is a priori unknown, and its 

selection and evaluations on the results obtained by clustering are crucial. Thus, the most challenging 

problem of the clustering realm is to select the right number of clusters of the dataset. For these reasons, the 

Elbow method (Ketchen and Shook 1996) has been applied to the data in order to determine how many 

groups the original continuous dataset has to be split into. 

Secondly, we perform k-means clustering for different values of k, for instance, by varying k from 5 to 

20 clusters. For each k, we calculate the total within-cluster sum of square (wss). Further, an algorithm has 

been implemented and applied to estimate the location of a bend (knee) within all the calculated wss with 

the number of clusters k. 

Finally, clustering labels with the standard features (Figure S2) are generated after the above data 

processing, which will be used as input in the next step. 

2.2.2. Time series based features generation 

2.2.2.1. Sliding time window implementation 

Figure S3 shows the principle of the sliding time window. The key variables involve the size as well as 

the sliding step-length of the time windows for data partitioning. The size configuration of the time 

windows has an essential impact on computational efficiency. In addition, the sliding step also has a critical 

influence on the clustering results. Too small steps may lead to redundant repetitive computation because 

of the overlapping of cross-window time series data sets. In our study, the size of the windows is set to 5-

days and the sliding step is set to 4-days, which will form overlapping 5-days windows in the time series 

(separated by a 1-day time lag). 

2.2.2.2. Clustering Technique 
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In order to reduce the data complexity of the series data, we cluster each parameter into several disjoint 

intervals. Clustering is a difficult task due to the great number of possible geometric shapes for the clusters 

and distances that can be divided. 

For the series-based data, we use classical Dynamic Time Warping (DTW) time series clustering 

algorithm (Petitjean et al. 2011) to carry out clustering analysis to obtain the demarcation point of each 

segmentation interval. As the parameters of the sliding time window are configured, the window data of 

the time series will be extracted and stored for each remote sensing parameter. Then, for each collection of 

remote sensing time series data, all-time series within the same time window will go through clustering, 

and each process of clustering within the time window will produce several clusters. As a result, the method 

will generate a number of cluster labels that cover all the time series data. 

However, this number of clusters is a priori unknown, and its selection and later evaluations of the 

results obtained by the clustering are crucial. Thus, one of the most challenging problems in the clustering 

realm is to select the right number of clusters for the data sets. For these reasons, the Davies-Bouldin Index 

(Davies and Bouldin 1979) has been applied to the data in order to determine the optimal number of clusters 

by varying the number of clusters k from 10 to 20 clusters. For each k, we calculate and compare the 

corresponding Davies-Bouldin Indexes. While the Davies-Bouldin index reaches its minimum value, the 

corresponding clusters number k is generally considered as the number of the clusters (Table S3).  

Clustering labels with 5 days as the overlapping time series are generated after the above data 

processing, which will be feed to machine learning algorithms as input features in the next step.  

After the data preprocessing is completed, we get four base data sets (Table S4), which are DataSet I: 

Satellite data of earthquakes of magnitude 7 or greater, DataSet II: Satellite data of earthquakes of 

magnitude between 6 and 7, DataSet III: the satellite data of the earthquakes of magnitude 7 or greater with 

the standard features and DataSet IV: the satellite data of earthquakes of magnitudes between 6 and 7 with 

the standard features. Moreover, we generate two datasets DataSet I-nonoverlap (Dataset II-nonoverlap) 
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exactly as we generate DataSet I (DataSet II) except that we use non-overlapping sliding windows instead 

of overlapping ones. 

3. Methodology 

The methodology carried out in this work is shown in a schematic way in Figure S4. First, a total of 

1234 earthquakes with magnitude between 6 and 7, and 137 earthquakes with magnitude 7 and over, 

covering a global area, are selected for the study. With a combination of different magnitudes of 

earthquakes and features, two datasets with ten remote sensing multi-parameters are generated. 

Each dataset, is carefully split into the training and test data, and the Z-Score normalization was 

performed as data preprocessing. Then the “sliding window” technique was implemented for the clustering 

process. The last step of data preprocessing is clustering, which is first performed on training data, and then 

cluster the testing sets according to the rules of training data, and finally, we generate time series based 

features. 

We benchmarked eight state of the art methods: Frequent Pattern Learning (FPL) (Cheng et al. 2007), 

Generalized Linear Models (GLM) (Zeger and Karim 1991), Gradient Boosting Machines (GBM) (Friedman 

2001), Deep Neural Network (DNN) (LeCun et al. 2015), Random Forests (RF) (Geurts et al. 2006), 

Convolutional Neural Network (CNN) (Krizhevsky et al. 2012), Logistic Regression (LR) (Walker and 

Duncan 1967) and Naive Bayes (NB) (Maron 1961). In our system, which applies Convolutional Neural 

Networks, we used a network architecture similar to Thibaut Perol’s work (Perol et al. 2018) where 4 layers 

are used in the study as the input samples are too few; this is implemented in Python (v 3.5) with PyTorch 

(v 0.4.0), and the other eight methods are implemented in R (v 3.4.1) packages: stats, H2O (v 3.18.0.1), arules 

(v1.6-1) and RevoScaleR (v9.2.1). Since the methods are sensitive to parameter selection, we choose to use 

the parameters that enable us to obtain the best performance in the experiments. After we have determined 

the parameters for each method, the performance of each method based on these parameters was compared 
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with the others. We use eight performance measures to evaluate the performance of each method. 

Benchmarking was performed on a desktop PC equipped with an Intel® Core™ i5-3470 CPU and 16GB of 

memory. 

Each algorithm is trained through the training dataset to produce a parameterized model, which is 

then applied to the testing dataset for forecasting labels. The models were then applied to every data in each 

testing dataset, resulting in forecasting label (votes). For the earthquake forecasting, we use majority voting, 

which is a reasonable decision rule that treats each alternative equally according to May's theorem (May 

1952), and every element makes a forecasting vote for the input data and the final earthquake forecasting is 

the one that receives more than half of the total votes. All the earthquake forecastings are compared with 

their corresponding actual values. This may result in certain deviations. Such deviations are evaluated 

resulting in ROC curves and Area Under the Curve (AUC). 

3.1 The proposed machine learning algorithm 

The proposed ensemble model is called Inverse Boosting Pruning Trees (IBPT) scheme, which 

combines an Adaboost variant with pruning decision trees for classification. In this paper, given the 

flexibility and ease of use of decision tree, we decide to use decision tree as the boosting base estimator. 

When an entire tree has a high variance, a decision dump often presents a mismatch problem. Therefore, in 

order to improve the generalization ability of the model, we consider pruning the tree. Our approach 

consists of two components: (1) Searching for the best-pruned tree. We applied all the training samples, 

allowed the decision tree to grow fully, and some branches of the tree are then pruned according to the cost-

complexity pruning method mentioned in Breiman (2017). (2) Building an inverse boosting structure. We 

use an inverse boosting structure with the pruned trees and updated weights. Then, repeat the steps until 

the maximum number of trees is reached. The proposed framework is summarised in Figure 1 
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Figure 1 The flowchart of the proposed IBPT framework. 

3.1.1. Discrete Adaboost 

In this paper, the classification algorithm is based on the discrete Adaboost algorithm proposed by 

Freund and Schapire (1996). Algorithm 1.1 proposes a baseline scheme of discrete Adaboost, which 

combines many simple assumptions (called weak learners) to form a strong classifier for classification tasks 

(Leshem 2005). We summarize the algorithm as follows: (1) Train multiple base classifiers in turn, and 

distribute the weight 𝑙𝑛(𝛽𝑚) according to their training error 𝜀𝑚. (2) A higher weight 𝑤𝑚+1,𝑖 is assigned 

to the samples misclassified by the previous classifier, which will make the classifier pay more attention to 

these samples. (3) At last, all the weak classifiers and their weights are integrated to constitute an ensemble 

Learner 𝐺(𝑋). Normally, Adaboost uses a decision dump (a one-level decision tree) as its weak learner. But, 

due to its simple structure, decision dumps sometimes do not fit training data well, result in that the 

integrated boosting learner does not perform well in complex data sets (Leshem 2005). In this paper, IBPT 

algorithm is recommended, which outperforms the standard Adaboost algorithm in two aspects: (1) it 

improves the ability of base classifier fitting and generalization.(2) We propose a new boosting structure to 

reduce the impact of less contributed data. 
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Algorithm 1  Discrete Adaboost algorithm. 

Require: Tree number M, N samples 

1: Initialise sample weight distribution 

 , 1,2, , 1,2, ,m miD w m M i N       and set each sample 
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7: Output  ( )   ( )
1

m m

M
G X sign ln G X

m


 
  

 
 . 

3.1.2. Inverse boosting pruning trees 

In this part, we introduce the IBPT algorithm. When an entire tree has a high variance, decision dump 

often has a high bias against the training data. Therefore, in order to make the system generalized we decide 

to trim the tree. In our algorithm, we first use all the training samples and allow the decision tree to grow 

fully, then pry some branches of the tree using the cost-complexity pruning method mentioned in Breiman 

(2017), and then use the corrected criteria to evaluate the system performance of the pruned tree and the 

updated weights. Finally, iterate through the steps until reaching the maximum number of trees. To shape 

our algorithm, here we declare the symbols used in this formula. Here, we represent the training dataset as 

𝐿 = 𝑋1, 𝑦1, 𝑋2, 𝑦2. . . . 𝑋𝑁, 𝑦𝑁 , where, 𝑋𝑛  means sample feature vector, 𝑦𝑛  means class label and 𝑁 means 

sample number. We use 𝐷𝑚 = (𝑤𝑚,𝑖 , 𝑤𝑚,𝑖+1. . . ), 𝑚 = 1,2, . . . 𝑀, 𝑖 = 1,2, . . . , 𝑁 to show the sample weight’s 

distribution in each iteration. 𝑀  means estimator number (iterations), and in the first iteration of 
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normalization, each sample weight is initialized to 
1

𝑁
. In addition, we apply 𝜑𝑚 and 𝐺𝑓𝑖𝑛𝑎𝑙(𝑥) to represent 

𝑚-th estimator’s weight and the final classifier, respectively. 

3.1.2.1 Search for the best pruned tree 

In most of the previous boosting algorithms (Chen and Guestrin 2016; Friedman 2001; Kokel et al. 2020), 

except num_ trees, max_depth and num_leaves are two key hyperparameters which affect the classifier's 

performance significantly. Manually tuning the hyperparameter combinations is a heavy task and it is hard 

to find the best parameter combinations for different datasets. Therefore, we propose a novel function called 

resampling weighted pruning to automatically prune redundant leaves and produce robust tree models, 

where weights are used to establish a relationship between the pruning and boosting practices. 

First, we define the original learning sample set as 𝐿, and randomly divide it into 𝑉 subsets, 𝐿𝑣, 𝑣 =

1, . . . , 𝑉 , then, the training set of each subset is 𝐿(𝑣) = 𝐿 − 𝐿𝑣 . 𝑇𝑚𝑎𝑥 , represents the tree comes from the 

original set 𝐿, and we build a complete tree in each subset 𝐿𝑣. The decision trees’ cost function is defined: 
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Where |�̃�| means leaves’ number, 𝐶 represents the class number, the sample of class 𝑐 is defined as 

𝑖𝑐. The loss of the trees is calculated by summarizing the gini impurity of all the leaves. Because each leaf 

node contains only the same class samples, the loss of an entire tree is generally zero. However, in the 

pruning process, 𝐺𝑖𝑛𝑖({𝑇}, {𝑤}) will increase when the samples of the pruning nodes are combined into 

their parent node. Since 𝐺𝑖𝑛𝑖({𝑇}, {𝑤}) always favors large trees, it is not the best method to select a pruned 

tree. Therefore, we add a penalty term, regularization parameter 𝛼 and the tree leaves |�̃�| to the cost 

function. The new equation is shown as follows:  
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 ( )  ({ },{ }) | |R T Gini T w T      (2) 

When 𝛼 is constant and |�̃�| decreases with pruning, the penalty term is the benefit of a smaller tree. 

Here, 𝑅𝛼(𝑇 − 𝑇𝑡) − 𝑅𝛼(𝑇) defines the variation in the cost function, where 𝑇 means the complete tree, 

𝑇𝑡 means the branch with the node at 𝑡, so the tree pruned at node 𝑡 should be 𝑇 − 𝑇𝑡. Next, 𝑅𝛼(𝑇 − 𝑇𝑡) 

is equivalent to the branch at node t, so as to calculate the cost of the pruning on the internal nodes. 
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Where,  
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When 𝛼 ≥ 𝑔(𝑡), the cost value will decrease, and the branch 𝑇𝑡 will be pruned. The order in which 

we pruning the branches begins like this: first, set 𝛼 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑔(𝑡) to find the branch, and prune the 

branch, then repeat the process until the tree is left with the root node. This provides a sequence of pruned 

trees {𝑇𝛼
(𝑣)

, 𝛼 = 0, . . . } with the associated cost-complexity parameter 𝛼.  

For 𝛼, we use the pruned tree 𝑇𝛼
(𝑣) to estimate the 𝑣 − 𝑡ℎ subset and obtain the following training 

error:  
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where 𝑖𝑚𝑖𝑠𝑠 means the index of the misclassified sample’s weight, 𝑤𝑚,𝑖
(𝑣)

 means the sample weight of 

the test set 𝐿𝑣 and 𝑇𝐸𝛼
(𝑣) means the misclassified rate of set 𝐿𝑣. Therefore, the average misclassified rate 

of 𝑣 is obtained as follows:  
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Meanwhile, we denotes 𝛼∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼𝑇𝐸𝛼 , and through pruning 𝑇𝑚𝑎𝑥  till 𝑅𝛼∗(𝑇𝑚𝑎𝑥) reaches the 

minimum, we obtained the best pruned tree.  

3.1.2.2 Inverse boosting structure 

As shown in the 4th and 5th steps of Algorithm 1, Adaboost adopts the training error 𝜀𝑚 as the boosting 

coefficient of the weak leaner to update the estimator’s weights and the sample weights. However 𝜀𝑚 is 

not a suitable criteria for the pruned trees. Actually, we should give the pruned trees higher estimated 

weights when they have lower training errors. Therefore, we suggest using a novel boosting structure, 

which associates the classification outcome with the pruned trees accordingly. 

Firstly, we fit the training data 𝐿 into a complete decision tree and prune it to obtain the best tree 

structure. Since 𝑇𝐸𝛼  truly reflects the result of the pruned tree, we apply 𝑇𝐸𝛼  instead of 𝜀𝑚  as the 

evaluation criteria. The weight of the estimator would be updated as follows,  
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    (7) 

The training process stop when 𝑇𝐸𝛼 ≥
1

2
, because the current estimator cannot maintain the 

classification performance at all times. 

Next, we propose an inverse structure to update the sample weight. In each iteration, we treat the 

misclassified samples as ‘intractable' items, which may affect the judgement and the robustness of the 

pruned tree. Therefore, inspired by Tong et al. (2019), the sample weight can be updated:  
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In Eqn. (8), 𝑍𝑚 is a normalization factor 
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𝐺𝑚(𝑋𝑖) is the estimated value of 𝑋𝑖 by the pruned tree 𝐺𝑚, 𝑦𝑖 means the ground-truth of sample 𝑋𝑖, 

and 𝐼(𝐺𝑚(𝑋𝑖), 𝑦𝑖) is defined:  
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The weight of the misclassified samples is decreasing, while the weight of the classified samples is 

increasing, which reduces the influence of the "intractable" items, which help to optimize the tree building 

in the subsequent iterations. Then, the next estimator is trained in the dataset 𝐿  with a new weight 

distribution 𝐷𝑚+1.  The training process will execute iteratively until meet the hyperparameter num_tree 

M. The final integrated classifier is: 
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The whole procedure is shown in Algorithm 2. 

3.1.3. Hyperparameter Optimization 

Hyperparameters determine the pre-defined characteristics of a classifier and hyperparameter should 

be set before the training process begins. Our novel classifier IBPT has few hyperparameters and here we 

use the Grid search method to tune the hyperparameters of IBPT: number of pruning trees, sample 

minimum number per leaf and iteration number of the pruning process. More specifically, the minimum 

number of the samples per leaf controls the pre-defined complexity of the decision trees and the final depth 

of the trees will be determined by our pruning methods. We create different combinations against these 

three parameters and use the Grid search method to search for the optimal hyperparameter list of IBPT. The 

performance of the trained classifiers is compared using five-fold cross-validation: the training data is 

divided randomly into five subsets and each time we will use four subsets to train a new IBPT classifier 

with the remaining data as the validation set. Then, comparing the validation results of different IBPT 
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models (using the Grid Search method), the best model is identified and its hyperparameters are selected 

for the final model in the testing stage. 

Algorithm 2  Inverse boosting pruning trees based algorithm. 

Require: M-Trees' number, N-Samples number, L-Learning samples, and V-

Folds. 

1: function BEST PRUNED SUBTREE (L, V, 
mD ). 

2:   Split the learning samples L into V folds, , 1,2, ,vL v V  , and grow a max 

tree 
maxT  on L. 

3:   Test sample set v

vL L L  . 

4:   for [1, ]v V  do 

5:       Fit a decision tree to 
vL  training samples. 

6:       Subtree sequence    ( ) , 0, ( ) 0v

tT R T T R T           

Recursively repeat till the tree only has root nodes: 1. Calculate g(t) using  

Eq. (4). 2. Set   ( )argmin g t   and prune the branch
tT . 

7:       Calculate ( )vTE  by Eq. (5). 

8:   end for 

9:   Compute ( )1

1

v
V

TE TE
vv

 


  

10:  Define *  argmin TE   . 

11:  The best pruned tree  mG X  is obtained by pruning 
maxT  till  * maxR T


 

becomes minimal. 

12:  return ( ),mG X TE
. 

13: end function 

14: 

15: function INVERSE BOOSTING(L, V, M, N) 

16:  Initialise sample weight distribution  , 1,2, , 1,2,m miD w m M i N       

and set each sample weight 
miw  to

1

N
. 

17:   for (1, )m M do 

18:      ( ),mG X TE   Best Pruned Subtree (L, V, 
mD ). 

19:      Update the estimator weight using Eq. (7). 

20:      Update each sample's weight ,m iw  using Eqs. (8) and (9). 

21:      Preserve Di for the next iteration 

22:   end for 

23:   return Final ensemble classifier ( )   ( )
1

m

final t m

M
G X sign W G X

m

 
  

 
 . 

24: end function 
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3.1.5. Feature Importance 

The feature importance: The importance of a feature is computed as the (normalized) reduction of the 

errors brought by that feature. It is also known as the Gini importance. The single node importance NI is 

defined as: 
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Where Nodesplit is the splited non-leaf node in the decision tree, Noderight and Nodeleft are the right 

and left children nodes of Nodesplit. 

The importance for each feature on a decision tree is then calculated as: 
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So M is the number of the trees in IBPT, F is the number of non-leaf nodes which employ the target 

feature to split data and K is the total number non-leaf in the m-th tree. 

3.2. Performance Evaluation 

In this study, we formulate the task of earthquake forecasting as a binary class classification problem 

and use eight performance measures, namely, Matthews correlation coefficient (MCC), Hanssen–Kuipers 

discriminant (R score), the Area Under the Curve (AUC), Specificity, Sensitivity, Accuracy and Precision 

and the Area Under the Recall-Precision Curve (AURPC), and to test the effectiveness of these measures. 

Area Under the Curve is the area under the receiver-operating characteristic (ROC), it is a plot of true 

positive rate (TPR) against false positive rate (FPR). In practice, AURPC is also often used to test the 

effectiveness, so AURPC can be a good option for the area under the curve (Davis and Goadrich 2006). 

The Accuracy (ACC) is defined as: 
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The Sensitivity (TPR) is defined as: 
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The Specificity (TNR) is defined as: 
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The Precision is defined as: 
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The Hanssen–Kuipers discriminant (R score) (Hanssen and Kuipers 1965) is defined as: 

 R 
( )( )
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score

TP FN FP TN
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Except for the metrics mentioned above, which stress on positives, it also used Matthews Correlation 

Coefficient (MCC) (Matthews 1975). This coefficient is a balanced measure, and it can measure the 

correlation between the expected class and the obtained class. MCC is calculated as: 

 MCC
( )( )( )( )

TP TN FP FN

TP FP TP FN TN FP TN FN

  


   
 (20) 

where TP means the true positives, TN means the true negatives, FP means the false positives and FN 

means the false negatives, respectively. 

4. Results and Discussion 

4.1 Comparison of results with different machine learning methods 

As shown in Table S5 and Table S6, all the benchmarking methods were used to construct models for 

forecasting, based on the two datasets with the generated features. No significant unbalance was found in 

the training and testing datasets, suggesting the credibility and stability of the forecasting models. The 
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performance metrics of MCC, R score and AUC were used to evaluate the performance of all the methods 

on the testing datasets. For Dataset I, the MCC of each method ranges from 0.4903 to 0.6581, the R score of 

each method ranges from 0.4643 to 0.6429, and the AUC of each method ranges from 0.5829 to 0.8718. We 

found that IBFT was the top performer for Dataset I (MCC =0.6581, R score = 0.6429 and AUC = 0.8718). The 

ROC curves of the methods on Dataset I are shown in Figure 2. 

For dataset II, IBPT was still the top performer (MCC =0.5958, R score = 0.5942 and AUC = 0.8683). The 

ROC curves of the methods on dataset II are shown in Figure 3. IBPT appears to be robust in accuracy on 

the two datasets. The MCC and accuracy of IBPT were the best on both the datasets. RF performed quite 

differently over these two datasets, though.  

Furthermore, we observed that IBPT performed better for the earthquakes with larger magnitudes (i.e., 

Dataset I). This can be explained by the fact that the features selected for larger earthquakes are more 

supportive in discriminating pre-earthquake perturbations. RF achieves the second-best accuracy in Dataset 

I (accuracy = 0.7679) and Dataset II (accuracy = 0.785). This suggests that a tree-based classifier is capable of 

producing better performance. Although MLP and CNN are constructed with four layers, e.g. fully 

connected and convolutional layers, their performance is worse than those of RF and GBM. This might be 

due to the fact that deep learning architectures require significantly large training sets (a large number of 

earthquakes) for system optimization and this is not available in the current research domain with very 

limited resources. 
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Figure 2 The ROC curves of the six best-benchmarking methods on the satellite dataset of earthquakes of 

magnitude 7 or greater with the proposed features a) with aftershocks (Dataset I) b) with aftershocks 

dropped (Dataset V). 
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Figure 3 The ROC curves of the six best-benchmarking methods on the satellite dataset of earthquakes of 

magnitudes between 6 and 7 with the proposed features a) with aftershocks (Dataset II) b) with aftershocks 

dropped (Dataset VI). 

4.2 Comparison between different features 
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As illustrated in Table S7 and Table S8, DataSet III, and DataSet IV were used to construct the models 

for forecasting, based on the two datasets (compared with the proposed “sliding window” features based 

on DataSet I and II). In general, we discover that the datasets with the proposed features (DataSet I and II) 

lead to better classification performance than the datasets with the standard features (DataSet III and IV) 

for all the classifiers used. The ROC curves of the methods for DataSet III and IV are shown in Figure 4 and 

Figure 5for performance comparison, respectively. 

In further analysis, we use IBPT as an example to analyse the experimental results, and generate four 

datasets based on the spatial and temporal features.  

As seen in Table S9, all the benchmarking datasets were used to compare the results of using different 

features by IBPT. We observe that the datasets with the proposed “sliding window” features lead to better 

classification outcomes than the datasets with the standard features: The MCC of IBPT on the two datasets 

with the proposed features are 0.6581 and 0.5958, respectively, and the MCC on the two datasets with the 

standard features are 0.6429 and 0.5258, respectively. From this observation, we interpret that the datasets 

with the proposed features enable the earthquake forecast to achieve better accuracy than those with the 

standard features. This is because the way of generating the proposed features by a “sliding window” style 

that covers 5 days (or so) observation data extracts sufficient information while reducing data redundancy. 

As shown in Figure 6, total integrated column ozone burden, outgoing longwave radiation flux (NOAA) 

and retrieved total column CO are the most important features rendered by the trained IBPT model when 

it is used to discriminate the earthquake and non-earthquake data. 
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Figure 4 The ROC curves of the six best-benchmarking methods on the satellite dataset of earthquakes of 

magnitude 7 or larger with the standard features a) with aftershocks (Dataset III) b) with aftershocks dropped 

(Dataset VII). 
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Figure 5 The ROC curves of the six best-benchmarking methods on the satellite dataset of earthquakes of 

magnitudes between 6 and 7 with the standard features a) with aftershocks (Dataset IV) b) with aftershocks 

dropped (Dataset VIII). 
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Figure 6 Features’ importance is evaluated by the proposed IBPT model on the satellite dataset of 

earthquakes of magnitudes with the proposed features. The colours shown here are used merely for better 

display quality. 

Table S10 and Table S11 present the forecasting performance of the six best-benchmarking methods on 

the datasets of the proposed features with non-overlapping windows. From Table S10, the MCC ranges 

from 0.3299 to 0.6075 and the accuracy ranges from 0.6429 to 0.8036 for different methods. It remains true 

that IBPT was the top performer for the dataset of earthquakes of magnitude 7 or greater with non-

overlapping windows. It has also been found that IBPT outperforms all the selected baselines for the dataset 

of earthquakes of magnitude between 6 and 7 with non-overlapping windows in Table S11. The ROC curves 

of the methods are shown in Figure 7 and Figure 8 for performance comparison, respectively. IBPT was still 

the top performer for the two datasets. Besides, in most cases, the models work better on datasets when 

overlapping windows are used for generating time series  (i.e., DataSet I and DataSet II) compared to the 

cases with non-overlapping windows used (i.e., DataSet I-nonoverlap and DataSet II-nonoverlap). A 

possible reason is that while the features based on non-overlapping windows are less correlated (which 
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have positive effects on the performance), the size of training dataset (generated based on the same raw 

dataset) are smaller (which have the negative effects on the performance). Besides, IBPT was still the top 

performer for the two newly considered datasets. 

4.3 Considering the aftershock effect 

The aftershocks may play an active role on earthquake forecasting. To demonstrate the aftershock 

effect, we have ruled out the aftershocks and carried out a comparative study. So, it is necessary to delete 

the data corresponding to aftershocks from the list of earthquakes (Yan et al. 2017). In our work, we 

associated an area of 2° × 2° centered on the epicenter for all earthquakes in the list, and to get the result. 

Practically, we processed the list in the following chronological order: First, select an earthquake (given 

earthquake) in the list, the setting feature is the time of the earthquake and its related region. Then, from 

the corresponding data list of the system, to remove any other earthquake occurred in the related area 

within 30 days after the given earthquake occurred. In our research framework, it is considered that 30 days 

is the maximum period of anomaly before the earthquake (we set the temporal window to be 30 by default 

in our study). Finally, we dropped 390 aftershocks. In addition, the data corresponding to the days of the 

aftershocks are deleted. After these operations, 981 independent earthquakes still remain in the list. 

According to Table S5, the proposed method IBPT is the top performer for the satellite dataset of 

earthquakes (with aftershocks dropped) of magnitude 7 or greater with the proposed features (Dataset V) 

(MCC =0.6429, R score = 0.6429 and AUC = 0.8878). The ROC curves of the methods for Dataset V are shown 

in Figure 2b. For Dataset VI (the satellite dataset of earthquakes (with aftershocks dropped) of magnitudes 

between 6 and 7 with the proposed features), IBPT is still the top performer (MCC = 0.5258, R score = 0.5058 

and AUC = 0.8211). The ROC curves of the methods for Dataset VI are shown in Figure 3b. The MCC and 

accuracy of IBPT were the best on both the datasets. 
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Figure 7 The ROC curves of the six best-benchmarking methods on the satellite dataset of earthquakes of 

magnitude 7 or greater with the proposed features a) with overlapped data (Dataset I) and b) with non-

overlapped data (Dataset I-nonoverlap).  
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Figure 8 The ROC curves of the six best-benchmarking methods on the satellite dataset of earthquakes of 

magnitudes between 6 and 7 with the proposed features a) with overlapped data (Dataset II) b) with non-

overlapped data (Dataset II-nonoverlap). 
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As illustrated in Figure 4b and Figure 5b, DataSet VII (the satellite dataset of earthquakes (with 

aftershocks dropped) of magnitude 7 or greater with the standard features) and DataSet VIII (the satellite 

dataset of earthquakes (with aftershocks dropped) of magnitudes between 6 and 7 with the standard 

features) were used to construct the models for forecasting, based on the standard features (compared with 

the proposed “sliding window” features based on DataSet V and DataSet VI). In general, we discover that 

the datasets with the proposed features (Dataset V and VI) lead to better classification performance than 

the datasets with the standard features (DataSet VII and VIII) for all the classifiers used. The ROC curves of 

the methods for DataSet VII and VIII are shown in Figure 4b and Figure 5b for performance comparison, 

respectively. IBPT was still the top performer for the two datasets. 

In general, although we dropped 390 aftershocks, our work shows that the proposed IBPT framework 

outperforms the chosen state of the art methods, and becomes the top performer for all the benchmarking 

datasets. Our work also further proves that the proposed IBPT model in combination with the proposed 

features performs better than the methods with the standard features, aftershocks had no effect on our result. 

4.4 Considering different temporal windows 

We have observed that satellite data with a temporal window of 30 days (DataSet V) has good 

forecasting precision. In order to investigate whether or not our proposed method is capable to predict 

earthquake with different temporal windows, satellite datasets with temporal windows of 05 days (Dataset 

IX), 10 days (Dataset X), 15 days (Dataset XI), 20 days (Dataset XII) and 25 days (Dataset XIII) have been 

generated (shown in Table S12). 

Figure S5a provides the ROC curve of the six datasets with different temporal windows. Table S13 

presents the forecasting performance with different temporal windows using IBPT. From Table S13, the 

MCC ranges from 0.3953 to 0.6429 and the accuracy ranges from 0.6727 to 0.8214 on different datasets. It 

remains true that by reducing the days of the temporal window, the performances decrease by about 0.24 



 

34 

 

for MCC and 0.14 for accuracy. That is, the proposed model’s performance is worse than that if we reduce 

the days of the temporal window. Based on these results, we conclude that the choice of the temporal 

window size is influencing, to a certain extent, the performance of the proposed model, by reducing its 

capability in predicting earthquakes. Although our proposed method is capable to predict earthquake with 

different temporal window sizes, it gives the best performance on the dataset with our initial selection of 

the temporal window of 30 days. 

4.5. Considering Different spatial windows 

Although satellite data with a spatial window with its center at the epicenter and a deviation of 3° 

(DataSet V) shows a strong capability in earthquake forecasting, satellite datasets of the spatial window 

with its center at the epicenter and a deviation of 1° (DataSet XVIII), 2° (DataSet XIX), 4° (DataSet XX) and 

5° (DataSet XXI) have been generated (Table S12) in order to further find the optimal spatial window.  

Table S14 presents the prediction performance with the five datasets of different spatial windows using 

IBPT. From Table S14, the AUC on each dataset ranges from 0.7389 to 0.8878 and the MCC ranges from 

0.4388 to 0.6429. We discover that the best performance is with the dataset with its center at the epicenter 

and a deviation of 3° (DataSet V, with AUC of 0.8878 and MCC of 0.6429), and by using different distances 

of the spatial window, the performance of AUC and MCC decreases by about 16.7% and 31.7%, respectively. 

From this observation, we conclude that although the IBPT model is capable of forecasting earthquake with 

different spatial window sizes, the dataset with its center at the epicenter and a deviation of 3° enable 

earthquake forecasting using satellite data to achieve better performance than those with other distance of 

the spatial window. Figure S5c provides the ROC curves of the five datasets (including DataSet V) with 

different spatial windows. 

4.6. Considering unbalanced dataset 
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As the actual earthquake problem is always highly unbalanced, where non-earthquakes instances are 

always higher as compared to earthquakes. In order to provide the realistic performance overview, we try 

our proposed method on unbalanced dataset in this section. To investigate whether or not our proposed 

method is capable to predict earthquake with unbalanced datasets, satellite dataset with the positive to 

negative ratio of 1:2 (Dataset XIV), 1:5 (Dataset XV), 1:10 (Dataset XVI) and 1:15 (Dataset XVII) have been 

generated (shown in Table S12). 

Table S15 illustrates the proposed method’s performance on the five datasets. As is shown in, the 

method has similar performance over the six datasets, e.g., the MCC of the proposed method on all the five 

datasets is around 0.62 (ranging from 0.6145 to 0.6429), the accuracy of the proposed method on all the five 

datasets is around 0.83 (ranging from 0.8214 to 0.8588). Figure S5b shows the ROC curves, we also observe 

a similar tendency that the performance of our method on the five datasets, suggesting that our method 

provides satisfactory performance for earthquake forecasting on the unbalanced datasets. Although the five 

unbalanced datasets are quite different, these results indicate that our method is not sensitive to the positive 

to negative ratio, and that our method can be used to predict earthquakes using unbalanced datasets, and 

provide good performance. 

4.7. Discussion 

We summarize the previous studies using machine learning for earthquake prediction and pre-

earthquake perturbation analysis from the satellite data, shown in Table S16. Through the performance 

comparison among these studies, the result shows that among those methods, the IBPT method 

outperforms the others, i.e., it gives the best performance on all the benchmarking datasets. Moreover, since 

earthquake is a small probability event, the actual earthquake problem is always highly unbalanced. In this 

paper, we mainly use Matthew’s Correlation Measure (MCC) to evaluate the performance. By comparison, 

the best MCC of our method IBPT can achieve 0.6581. 
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There are multiple sources of uncertainty associated with the infrared and hyperspectral satellite data 

and methods for earthquake forecasting. Uncertainty of data precision is caused by random effects in the 

data, and uncertainty of data accuracy is caused by systematic effects (Smith et al. 2015). Specifically, 

uncertainties of infrared OLR data can attribute to several factors, including the magnitudes and the degrees 

of persistency of the regional OLR diurnal and interannual variations (Gruber et al. 2007), the goodness of 

fit of the models (Moy et al. 2010), surface emissivity (Clerbaux et al. 2020), the AVHRR OLR’s precision is 

with particularly large uncertainties in the deserts and elevated regions (Gruber et al. 2007). The uncertainty 

of surface skin temperature obtained from ARIS could be due to the short periods of the satellite based 

temperature records (Kang et al. 2015). Land surface temperatures uncertainties are affected by the 

methodologies for the surface retrieval and emissivity first guess (Hulley and Hook 2012). Pagano et al. 

(2020) give detailed discussion of measurement uncertainties of AIRS L1B radiances, and note that large 

uncertainty in the modules at low scene temperatures due to the larger polarization uncertainty, and the 

larger errors associated with the emissivity degradation in the shorter wavelength modules. Moreover, the 

wide variety of cloud complexity is an important factor in uncertainty for AIRS error estimation (Kahn et 

al. 2015; Wong et al. 2015). Furthermore, as parameter tuning of the proposed IBPT model is time-

consuming and challenging, we cannot guarantee that optimized parameters were obtained for the models 

trained in each dataset, though most cases were covered through the grid search method employed in our 

study. Still, this introduced additional uncertainty to the earthquake forecasting of the proposed model.  

One limitation of IBPT is that it has significant computational complexity because of the pruning 

methods. More specifically, in each iteration, the base tree of the IBPT needs to grow fully with the training 

data then iteratively prune leaf nodes from bottom to top. This process improves the fitting and 

generalization ability of the base trees but reduce its training speed. This problem can be handled by 

deploying more computing resources such as multiple CPUs or GPUs. 

5. Conclusions 
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Hyperparametric optimization and cross-validation are used in our proposed system for earthquake 

forecasting, which allows us to find the best parameters for our model. In this way, we can perform model 

selection with high confidence, assuring that a robust model is selected and used. By comparison, our 

method IBPT improves by 16% in MCC (from 0.5657 to 0.6581) and more than 10% in R score (from 0.5357 

to 0.6429) over the next-best CNN. It can be concluded that the proposed IBPT framework outperforms the 

chosen state of the art methods, and becomes the top performer for all the benchmarking datasets.Moreover, 

we could observe that infrared and hyperspectral satellite measurements in the circular region with its 

center at the epicenter and a radius of 3°and 30 days before the times of the shocks are more reasonable in 

earthquake forecasting. Our work also further proves that aftershocks had no effect on the result performed 

by the proposed IBPT model. 

Our work also indicates that the proposed IBPT model in combination with the proposed features 

performs better than the methods with the standard features. The proposed time series based are able to 

help improve the accuracy of the earthquake forecasting task. It can significantly improve performance on 

the satellite dataset of earthquakes of magnitudes between 6 and 7, the MCC of IBPT with the proposed 

features improves by 13.3%, which shows the proposed IBPT scheme is effective to some extent on the 

datasets of a relatively large sample size. It can also be inferred from the feature importance analysis that 

total integrated column ozone burden, outgoing longwave radiation flux (NOAA) and retrieved total 

column CO are the most important features rendered by the trained IBPT model when it is used to 

discriminate seismic and non-seismic data. 

Our work shows that the use of big satellite data analytics with machine learning is capable of 

successfully improving the likelihood of earthquake forecasting. In particular, earthquakes may be 

forecasted to some extent using the proposed IBPT framework with the proposed spatial and temporal 

features.  
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Figure S1 Simplified inherent relations between the selected ten parameters.  
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Figure S2 Example of ten standard features at latitude of 40.5 and longitude of 55.5 (2013).  
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Figure S3 Sliding time window.  
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Figure S4 Schematic diagram of the methodology used to retrieve, divide, train and test the set of 

machine learning methods used to perform the proposed study  
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Figure S5 The ROC curves on a) the six datasets with different temporal windows, b) the five unbalanced 

datasets with different positive to negative ratios, and c) the five datasets of different spatial windows. 

Table S1 Satellite's multi-source and multi-parameters information can be utilized in the pre-earthquake 

anomaly detection. 

Multi-parameters Data source 
temporal 

coverage 

Temporal 

resolution 
spatial coverage 

Spatial 

resolution 

Infrared brightness 

temperature 

FY2-VISSR Since 2005 Half an hour 

60°N-60°S, 45°E-165°E

（FY2C/2E） 

45°E-165°E (FY2D) 

0.1°x 0.1° 

NOAA-AVHRR Since 1994 Twice a day global coverage 1.1km 

AUAQ/TERRA-

MODIS 
Since 2000 Twice a day global coverage 1.0 km 
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Outgoing longwave radiation 

NOAA-AVHRR Since 1994 Twice a day global coverage 
1°x 1° 

2.5°x 2.5° 

FY2-VISSR Since 2005 Half an hour 

60°N-60°S, 45°E-165°E

（FY2C/2E） 

45°E-165°E (FY2D) 

0.1°x 0.1° 

Surface Temperature 

AQUA- AIRS Since 2002 Twice a day global coverage 1°x 1° 

NCEP-NCAR 

Reanalysis 
Since 1948 Six hours global coverage 1.9°x 1.9° 

AUAQ/TERRA-

MODIS 
Since 2000 Four times a day global coverage 1.0 km 

SLHF 
NCEP-NCAR 

Reanalysis 
Since 1948 Six hours global coverage 1.9°x 1.9° 

Water vapour contents、

O3、CO、CH4 
AQUA- AIRS Since 2002 Twice a day global coverage 1°x 1° 

CO2 AQUA- AIRS Since 2002 Twice a day global coverage 2.5°x 2.5° 
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Table S2 Details of ten multi-parameters used in the experiments. 

Vertical 

Level 
Multi-parameters Physical interpretation Data obtain Temporal resolution Spatial resolution 

Ground 

surface 

MODIS_LST Land surface temperatures AQUA- AIRS Twice a day 1°x 1° 

SurfSkinTemp_AIRS Surface skin temperature. 

(Kelvin) 

AQUA- AIRS Twice a day 1°x 1° 

Specified 

height above 

ground 

 

SurfAirTemp_AIRS Temperature of the 

atmosphere at the Earth’s 

surface. (Kelvin) 

AQUA- AIRS Twice a day 1°x 1° 

H2O_AIRS Water vapour mass mixing 

ratio at the surface (gm/kg 

dry air) 

AQUA- AIRS Twice a day 1°x 1° 

O3_AIRS Total integrated column 

ozone burden. (Dobson 

units) 

AQUA- AIRS Twice a day 1°x 1° 

CO_AIRS Retrieved total column CO. 

(molecules/cm2) 

AQUA- AIRS Twice a day 1°x 1° 

CH4_AIRS Retrieved total column CH4. 

(molecules/cm2) 

AQUA- AIRS Twice a day 1°x 1° 

Top of 

atmosphere 

OLR_AIRS Outgoing longwave 

radiation flux. (watts/m2) 

AQUA- AIRS Twice a day 1°x 1° 

CLOLR_ AIRS Clear-sky outgoing 

longwave radiation flux. 

(watts/m2) 

AQUA- AIRS Twice a day 1°x 1° 

OLR_NOAA Outgoing longwave 

radiation flux. (watts/m2) 

NOAA-AVHRR Twice a day 1°x 1° 
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Table S3 Number of label clusters for parameters in every datasets. 

        Parameters 

DataSets 

SurfSkinTemp 

AIRS 

SurfAirTemp 

AIRS 

H2O 

AIRS 

O3 

AIRS 

CO 

AIRS 

CH4 

AIRS 

OLR 

AIRS 

CLOLR  

AIRS 

OLR 

NOAA 

MODIS 

LST 

DataSet I 11 11 10 10 11 10 11 10 10 4 

DataSet II 10 10 10 10 11 10 10 10 11 4 

DataSet III 10 10 10 9 10 10 10 10 9 10 

DataSet IV 10 10 10 10 10 10 10 10 10 10 

DataSet V 10 11 11 19 10 10 11 13 10 4 

DataSet VI 11 12 11 19 11 11 11 14 15 4 

DataSet VII 9 10 10 10 10 10 10 10 10 10 

DataSet VIII 10 10 10 9 10 10 10 10 10 10 

Dataset IX 15 11 13 17 17 10 14 14 10 4 

Dataset X 11 10 17 17 17 11 14 17 10 4 

Dataset XI 10 16 14 10 11 11 11 11 10 5 

Dataset XII 18 11 10 10 14 10 13 13 11 4 

Dataset XIII 12 10 10 15 14 11 10 12 14 4 

Dataset XIV 10 15 10 10 10 10 10 15 11 5 

Dataset XV 10 11 14 13 10 11 14 14 11 5 

Dataset XVI 11 16 11 11 11 11 11 11 10 6 

Dataset XVII 11 10 13 12 10 11 14 13 11 4 
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Table S4 Data sets used as input to the models (DataSet I to DataSet VIII). 

 Spatial Feature 
Temporal 

Feature 

Features 

generation 

Earthquakes 

magnitude 

Real 

earthquakes/ 

non-seismic 

events 

 

DataSet 

I 

with its center 

at the epicenter 

and a deviation 

of 3° 

30 days 

before an 

earthquake 

Time series 

based 

features 

earthquakes of 

magnitude 7 or 

greater 

137 

earthquakes/ 

137 

earthquakes 

with 

aftershocks 

DataSet 

II 

with its center 

at the epicenter 

and a deviation 

of 3° 

30 days 

before an 

earthquake 

Time series 

based 

features 

earthquakes of 

magnitude 

between 6 and 7 

1234 

earthquakes/ 

1234 

earthquakes 

with 

aftershocks 

DataSet 

III 

with its center 

at the epicenter 

and a deviation 

of 3° 

30 days 

before an 

earthquake 

Standard 

features 

earthquakes of 

magnitude 7 or 

greater 

137 

earthquakes/ 

137 

earthquakes 

with 

aftershocks 

DataSet 

IV 

with its center 

at the epicenter 

and a deviation 

of 3° 

30 days 

before an 

earthquake 

Standard 

features 

earthquakes of 

magnitude 

between 6 and 7 

1234 

earthquakes/ 

1234 

earthquakes 

with 

aftershocks 

DataSet 

V 

with its center 

at the epicenter 

and a deviation 

of 3° 

30 days 

before an 

earthquake 

Time series 

based 

features 

earthquakes of 

magnitude 7 or 

greater 

121 

earthquakes/ 

121 

earthquakes 

with 

aftershocks 

dropped 

DataSet 

VI 

with its center 

at the epicenter 

and a deviation 

of 3° 

30 days 

before an 

earthquake 

Time series 

based 

features 

earthquakes of 

magnitude 

between 6 and 7 

860 

earthquakes/ 

860 

earthquakes 

with 

aftershocks 

dropped 

DataSet 

VII 

with its center 

at the epicenter 

and a deviation 

of 3° 

30 days 

before an 

earthquake 

Standard 

features 

earthquakes of 

magnitude 7 or 

greater 

121 

earthquakes/ 

121 

earthquakes 

with 

aftershocks 

dropped 

DataSet 

VIII 

with its center 

at the epicenter 

and a deviation 

of 3° 

30 days 

before an 

earthquake 

Standard 

features 

earthquakes of 

magnitude 

between 6 and 7 

860 

earthquakes/ 

860 

earthquakes 

with 

aftershocks 

dropped 
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Table S5 Forecasting performance with the six best-benchmarking methods on DataSet I and V (Satellite data of earthquakes of magnitude 7 or greater) with 

the generated features. Bold: The bold refers to the first place result of all the methods in the comparisons.  

  

DataSet I 

 MCC R score AUC Specificity Sensitivity Accuracy Precision TN TP FN FP 

IBPT 0.6581 0.6429 0.8718 0.7143 0.9286 0.8214 0.7647 20 26 2 8 

RF 0.5388 0.5357 0.8316 0.7143 0.8214 0.7679 0.7419 20 23 5 8 

CNN 0.5657 0.5357 0.7449 0.6071 0.9286 0.7679 0.7027 17 26 2 11 

FI 0.5533 0.5357 0.7997 0.8929 0.6429 0.7679 0.8571 25 18 10 3 

GBM 0.5013 0.5 0.7857 0.7857 0.7143 0.75 0.7692 22 20 8 6 

MLP 0.4903 0.4643 0.5829 0.5714 0.8929 0.7321 0.6757 16 25 3 12 

DataSet V 

 MCC R score AUC Specificity Sensitivity Accuracy Precision TN TP FN FP 

IBPT 0.6429 0.6429 0.8878 0.8214 0.8214 0.8214 0.8214 23 23 5 5 

RF 0.6075 0.6071 0.8642 0.8214 0.7857 0.8036 0.8148 23 22 6 5 

CNN 0.5 0.5 0.7895 0.75 0.75 0.75 0.75 21 21 7 7 

FI 0.3951 0.3929 0.72 0.6429 0.75 0.6964 0.6774 18 21 7 10 

GBM 0.6107 0.6071 0.8272 0.75 0.8571 0.8036 0.7742 21 24 4 7 

MLP 0.2582 0.25 0.5893 0.5 0.75 0.625 0.6 14 21 7 14 
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Table S6 Forecasting performance with the six best-benchmarking methods on DataSet II and VI (Satellite data of earthquakes of magnitude between 6 and 7) 

with the generated features. Bold: The bold indicates the first place result of all the methods in the comparisons.  

DataSet II 

 MCC R score AUC Specificity Sensitivity Accuracy Precision TN TP FN FP 

IBPT 0.5958 0.5942 0.8683 0.834 0.7602 0.7972 0.8202 206 187 59 41 

RF 0.57 0.57 0.8664 0.7895 0.7805 0.785 0.7869 195 192 54 52 

CNN 0.3866 0.3797 0.7365 0.5951 0.7846 0.6897 0.6587 147 193 53 100 

FI 0.3943 0.3912 0.7166 0.7571 0.6341 0.6957 0.7222 187 156 90 60 

GBM 0.4727 0.4726 0.7977 0.749 0.7236 0.7363 0.7417 185 178 68 62 

MLP 0.3064 0.3063 0.7114 0.6437 0.6626 0.6531 0.6494 159 163 83 88 

DataSet VI 

 MCC R score AUC Specificity Sensitivity Accuracy Precision TN TP FN FP 

IBPT 0.5258 0.5058 0.8211 0.8895 0.6163 0.7529 0.848 153 106 66 19 

RF 0.4844 0.4651 0.8136 0.8721 0.593 0.7326 0.8226 150 102 70 22 

CNN 0.4746 0.4244 0.7579 0.936 0.4884 0.7122 0.8842 161 84 88 11 

FI 0.3743 0.3547 0.7172 0.8372 0.5174 0.6773 0.7607 144 89 83 28 

GBM 0.4447 0.3895 0.7625 0.936 0.4535 0.6948 0.8764 161 78 94 11 

MLP 0.3544 0.3081 0.6885 0.407 0.9012 0.6541 0.6031 70 155 17 102 
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Table S7. Forecasting performance with the six best-benchmarking methods on DataSet III and VII (the satellite data of earthquakes of magnitude 7 or greater 

with the standard features). The bold indicates the first place result of all the methods in the comparisons. 

  

DataSet III 

 MCC R score AUC Specificity Sensitivity Accuracy Precision TN TP FN FP 

IBPT 0.5587 0.5495 0.8104 0.6923 0.8571 0.7778 0.75 18 24 4 8 

RF 0.593 0.5934 0.7816 0.8077 0.7857 0.7963 0.8148 21 22 6 5 

CNN 0.3602 0.3159 0.6415 0.4231 0.8929 0.6667 0.625 11 25 3 15 

FI 0.2946 0.294 0.6078 0.6154 0.6786 0.6481 0.6552 16 19 9 10 

GBM 0.5189 0.5192 0.7679 0.7692 0.75 0.7593 0.7778 20 21 7 6 

MLP 0.3602 0.3159 0.6291 0.4231 0.8929 0.6667 0.625 11 25 3 15 

DataSet VII 

 MCC R score AUC Specificity Sensitivity Accuracy Precision TN TP FN FP 

IBPT 0.5754 0.5493 0.8227 0.9286 0.6207 0.7719 0.9 26 18 11 2 

RF 0.4067 0.4052 0.7278 0.75 0.6552 0.7018 0.7308 21 19 10 7 

CNN 0.4442 0.4409 0.7069 0.7857 0.6552 0.7193 0.76 22 19 10 6 

FI 0.268 0.2586 0.6552 0.5 0.7586 0.6316 0.6111 14 22 7 14 

GBM 0.4414 0.436 0.7457 0.6429 0.7931 0.7193 0.697 18 23 6 10 

MLP 0.3784 0.3372 0.6715 0.4419 0.8953 0.6686 0.616 76 154 18 96 
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Table S8 Forecasting performance with the six best-benchmarking methods on DataSet IV and VIII (the satellite data of earthquakes of magnitude between 6 

and 7 with the standard features). The bold refers to the first place result of all the methods in the comparisons. 

  

DataSet IV 

 MCC R score AUC Specificity Sensitivity Accuracy Precision TN TP FN FP 

IBPT 0.4813 0.4808 0.8156 0.7166 0.7642 0.7404 0.7287 177 188 58 70 

RF 0.4039 0.392 0.7408 0.5749 0.8171 0.6957 0.6569 142 201 45 105 

CNN 0.4457 0.4405 0.7342 0.6437 0.7967 0.7201 0.6901 159 196 50 88 

FI 0.2536 0.2535 0.6492 0.6356 0.6179 0.6268 0.6281 157 152 94 90 

GBM 0.4816 0.4808 0.7917 0.7126 0.7683 0.7404 0.7269 176 189 57 71 

MLP 0.3273 0.3189 0.6652 0.5466 0.7724 0.6592 0.6291 135 190 56 112 

DataSet VIII 

 MCC R score AUC Specificity Sensitivity Accuracy Precision TN TP FN FP 

IBPT 0.4905 0.4884 0.8143 0.7907 0.6977 0.7442 0.7692 136 120 52 36 

RF 0.402 0.3547 0.626 0.4419 0.9128 0.6773 0.6206 76 157 15 96 

CNN 0.4304 0.407 0.7136 0.5407 0.8663 0.7035 0.6535 93 149 23 79 

FI 0.228 0.2151 0.6277 0.4419 0.7733 0.6076 0.5808 76 133 39 96 

GBM 0.4533 0.436 0.7921 0.8547 0.5814 0.718 0.8 147 100 72 25 

MLP 0.3306 0.3256 0.7294 0.75 0.5756 0.6628 0.6972 129 99 73 43 



 

15 

 

Table S9 Forecasting performance with the benchmarked eight datasets using IBPT. 

  

 DataSets MCC R score AUC Specificity Sensitivity Accuracy Precision TN TP FN FP 

Proposed Feature 

DataSet I 0.6581 0.6429 0.8718 0.7143 0.9286 0.8214 0.7647 20 26 2 8 

DataSet II 0.5958 0.5942 0.8683 0.834 0.7602 0.7972 0.8202 206 187 59 41 

DataSet V 0.6429 0.6429 0.8878 0.8214 0.8214 0.8214 0.8214 23 23 5 5 

DataSet VI 0.5258 0.5058 0.8211 0.8895 0.6163 0.7529 0.848 153 106 66 19 

Standard Feature 

DataSet III 0.5587 0.5495 0.8104 0.6923 0.8571 0.7778 0.75 18 24 4 8 

DataSet IV 0.4813 0.4808 0.8156 0.7166 0.7642 0.7404 0.7287 177 188 58 70 

DataSet VII 0.5754 0.5493 0.8227 0.9286 0.6207 0.7719 0.9 26 18 11 2 

DataSet VIII 0.4905 0.4884 0.8143 0.7907 0.6977 0.7442 0.7692 136 120 52 36 
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Table S10 Forecasting performance with the six best-benchmarking methods on DataSet I and I-nonoverlap (Satellite data of earthquakes of magnitude 7 or 

greater) with the generated features. Bold: The bold indicates the first place result of all the methods in the comparisons.  

  

DataSet I 

 MCC R score AUC Specificity Sensitivity Accuracy Precision TN TP FN FP 

IBPT 0.6581 0.6429 0.8718 0.7143 0.9286 0.8214 0.7647 20 26 2 8 

RF 0.5388 0.5357 0.8316 0.7143 0.8214 0.7679 0.7419 20 23 5 8 

CNN 0.5657 0.5357 0.7449 0.6071 0.9286 0.7679 0.7027 17 26 2 11 

FI 0.5533 0.5357 0.7997 0.8929 0.6429 0.7679 0.8571 25 18 10 3 

GBM 0.5013 0.5 0.7857 0.7857 0.7143 0.75 0.7692 22 20 8 6 

MLP 0.4903 0.4643 0.5829 0.5714 0.8929 0.7321 0.6757 16 25 3 12 

DataSet I-nonoverlap 

 MCC R score AUC Specificity Sensitivity Accuracy Precision TN TP FN FP 

IBPT 0.6075 0.6071 0.8170 0.8214 0.7857 0.8036 0.8148 23 22 6 5 

RF 0.5197 0.463 0.7606 0.5 0.963 0.7273 0.65 14 26 1 14 

CNN 0.3299 0.2857 0.6932 0.3929 0.8929 0.6429 0.5952 11 25 3 17 

FI 0.4588 0.4286 0.7143 0.8929 0.5357 0.7143 0.8333 25 15 13 3 

GBM 0.5678 0.5185 0.7634 0.963 0.5556 0.7593 0.9375 26 15 12 1 

MLP 0.3951 0.3929 0.7398 0.6429 0.75 0.6964 0.6774 18 21 7 10 
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Table S11 Forecasting performance with the six best-benchmarking methods on DataSet II and II-nonoverlap (Satellite data of earthquakes of magnitude 

between 6 and 7) with the generated features. Bold: The bold indicates the first place result of all the methods in the comparisons.  

DataSet II 

 MCC R score AUC Specificity Sensitivity Accuracy Precision TN TP FN FP 

IBPT 0.5958 0.5942 0.8683 0.834 0.7602 0.7972 0.8202 206 187 59 41 

RF 0.57 0.57 0.8664 0.7895 0.7805 0.785 0.7869 195 192 54 52 

CNN 0.3866 0.3797 0.7365 0.5951 0.7846 0.6897 0.6587 147 193 53 100 

FI 0.3943 0.3912 0.7166 0.7571 0.6341 0.6957 0.7222 187 156 90 60 

GBM 0.4727 0.4726 0.7977 0.749 0.7236 0.7363 0.7417 185 178 68 62 

MLP 0.3064 0.3063 0.7114 0.6437 0.6626 0.6531 0.6494 159 163 83 88 

DataSet II –nonoverlap 

 MCC R score AUC Specificity Sensitivity Accuracy Precision TN TP FN FP 

IBPT 0.6176 0.6000 0.8613 0.9184 0.6816 0.8000 0.8930 225 167 78 20 

RF 0.5839 0.5673 0.8591 0.9020 0.6653 0.7837 0.8717 221 163 82 24 

CNN 0.4287 0.4082 0.7651 0.8571 0.551 0.7041 0.7941 210 135 110 35 

FI 0.2451 0.2449 0.6532 0.6041 0.6408 0.6224 0.6181 148 157 88 97 

GBM 0.4261 0.4122 0.7721 0.8327 0.5796 0.7061 0.7760 204 142 103 41 

MLP 0.2816 0.2122 0.5669 0.2776 0.9347 0.6061 0.5640 68 229 16 177 
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Table S12 Data sets used as input to the models (Dataset IX to Dataset XXI). 

 Spatial Feature 
Temporal 

Feature 

Features 

generation 

Earthquakes 

magnitude 

Number of real 

earthquakes/ 

artificial non-

seismic events 

Dataset 

IX 

with a deviation of 

3° 

25 days before 

an earthquake 

Time series 

based features 

earthquakes of 

magnitude 7 or greater 

121 earthquakes/ 

121 earthquakes 

Dataset X 
with a deviation of 

3° 

20 days before 

an earthquake 

Time series 

based features 

earthquakes of 

magnitude 7 or greater 

121 earthquakes/ 

121 earthquakes 

Dataset 

XI 

with a deviation of 

3° 

15 days before 

an earthquake 

Time series 

based features 

earthquakes of 

magnitude 7 or greater 

121 earthquakes/ 

121 earthquakes 

Dataset 

XII 

with a deviation of 

3° 

10 days before 

an earthquake 

Time series 

based features 

earthquakes of 

magnitude 7 or greater 

121 earthquakes/ 

121 earthquakes 

Dataset 

XIII 

with a deviation of 

3° 

05 days before 

an earthquake 

Time series 

based features 

earthquakes of 

magnitude 7 or greater 

121 earthquakes/ 

121 earthquakes 

Dataset 

XIV 

with a deviation of 

3° 

30 days before 

an earthquake 

Time series 

based features 

earthquakes of 

magnitude 7 or greater 

121 earthquakes/ 

242 earthquakes 

Dataset 

XV 

with a deviation of 

3° 

30 days before 

an earthquake 

Time series 

based features 

earthquakes of 

magnitude 7 or greater 

121 earthquakes/ 

605 earthquakes 

Dataset 

XVI 

with a deviation of 

3° 

30 days before 

an earthquake 

Time series 

based features 

earthquakes of 

magnitude 7 or greater 

121 earthquakes/ 

1210 earthquakes 

Dataset 

XVII 

with a deviation of 

3° 

30 days before 

an earthquake 

Time series 

based features 

earthquakes of 

magnitude 7 or greater 

121 earthquakes/ 

1815 earthquakes 

DataSet 

XVIII 

with a deviation of 

1° 

30 days before 

an earthquake 

Time series 

based features 

earthquakes of 

magnitude 7 or greater 

121 earthquakes/ 

121 earthquakes 

DataSet 

XIX 

with a deviation of 

2° 

30 days before 

an earthquake 

Time series 

based features 

earthquakes of 

magnitude 7 or greater 

121 earthquakes/ 

121 earthquakes 

DataSet 

XX 

with a deviation of 

4° 

30 days before 

an earthquake 

Time series 

based features 

earthquakes of 

magnitude 7 or greater 

121 earthquakes/ 

121 earthquakes 

DataSet 

XXI 

with a deviation of 

5° 

30 days before 

an earthquake 

Time series 

based features 

earthquakes of 

magnitude 7 or greater 

121 earthquakes/ 

121 earthquakes 
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Table S13. Forecasting performance with the six datasets of different temporal windows using IBPT. 

  

DataSets 
Temporal 

window 
MCC 

R 

score 
AUC Specificity Sensitivity Accuracy Precision TN TP FN FP 

DataSet 

V 
30 days 0.6429 0.6429 0.8878 0.8214 0.8214 0.8214 0.8214 23 23 5 5 

Dataset 

IX 
25 days 0.5533 0.5357 0.7972 0.8929 0.6429 0.7679 0.8571 25 18 10 3 

Dataset 

X 
20 days 0.5826 0.5357 0.764 0.9643 0.5714 0.7679 0.9412 27 16 12 1 

Dataset 

XI 
15 days 0.3824 0.3571 0.7188 0.8571 0.5 0.6786 0.7778 24 14 14 4 

Dataset 

XII 
10 days 0.5361 0.5357 0.7895 0.7857 0.75 0.7679 0.7778 22 21 7 6 

Dataset 

XIII 
05 days 0.3953 0.336 0.7255 0.9286 0.4074 0.6727 0.8462 26 11 16 2 
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Table S14. Forecasting performance with the five datasets of different spatial windows using IBPT. 

 
  

DataSets 
Spatial 

window 
MCC R score AUC Specificity Sensitivity Accuracy Precision TN TP FN 

DataSet 

XVIII 
1 degree 0.4388 0.4372 0.7389 0.7586 0.6786 0.7193 0.7308 22 19 9 

DataSet 

XIX 
2 degree 0.5893 0.5644 0.831 0.931 0.6333 0.7797 0.9048 27 19 11 

DataSet 

V 
3 degree 0.6429 0.6429 0.8878 0.8214 0.8214 0.8214 0.8214 23 23 5 

DataSet 

XX 
4 degree 0.5533 0.5357 0.8469 0.6429 0.8929 0.7679 0.7143 18 25 3 

DataSet 

XXI 
5 degree 0.6318 0.6096 0.8571 0.931 0.6786 0.807 0.9048 27 19 9 
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Table S15. Forecasting performance with the five datasets of different rate of true earthquakes and artificial-non 

earthquakes using IBPT. 

  

DataSets 

Positive to 

Negative 

ratio 

MCC R score AUC Specificity Sensitivity Accuracy Precision TN TP FN 

DataSet 

V 
1:1 0.6429 0.6429 0.8878 0.8214 0.8214 0.8214 0.8214 23 23 5 

Dataset 

XIV 
1:2 0.6247 0.6004 0.8411 0.9107 0.6897 0.8353 0.8 51 20 9 

Dataset 

XV 
1:5 0.6145 0.5727 0.782 0.9298 0.6429 0.8353 0.8182 53 18 10 

Dataset 

XVI 
1:10 0.6169 0.5909 0.8073 0.9123 0.6786 0.8353 0.7917 52 19 9 

Dataset 

XVII 
1:15 0.6717 0.6259 0.8133 0.9474 0.6786 0.8588 0.8636 54 19 9 
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Table S16. Previous studies using machine learning for earthquake prediction from the satellite data. BPNN: back-

propagation neural network. MARBDP: mining association rule based on dynamic pruning. DEMETER: Detection 

of Electro-Magnetic Emissions Transmitted from Earthquake Regions. CSES: China Seismo-Electromagnetic 

Satellite. GNSS: Global Navigation Satellite System. TEC: Total electron content. AIRS: Atmospheric Infrared 

Sounder. NOAA: National Oceanic and Atmospheric Administration.  

Study 
Study 

Area  
Study Period Satellite Data Model Objective and Performance 

Xu et al. 

(2010) 
The globe 2007–2008 DEMETER BPNN 

Predict seismic events in 

2008. 

Accuracy: 69.96%. 

Wang et al. 

(2014) 

Taiwan, 

China 

January 2008–

June 2008 
DEMETER MARBDP 

Predict earthquakes of 

Ms >5.0 from January 2008 to 

June 2008. 

sensitivity: 70.01% 

Li et al. 

(2020) 
The globe 

June 2004 to 

December 2010. 

DEMETER 

and CSES 

statistical 

method 

Electromagnetic pre-

earthquake perturbations 

detection. 

False positive rate: 50.2% 

Ouyang et 

al. (2020) 
The globe 

May 2005 to 

November 2010 
DEMETER 

Superposed 

epoch analysis 

Electromagnetic pre-

earthquake perturbations 

detection. 

Accuracy: 34% 

Liu et al. 

(2000) 
Taiwan 1994 to 1999 GNSS TEC 

the interquartile 

range (IQR) 

TEC pre-earthquake 

anomalies detection. 

Accuracy: 73.8% 

Our 

proposed 

method 

The globe 
January 2006 to 

December 2013 

NASA AIRS 

and NOAA 
IBPT 

Earthquakes prediction. 

Accuracy: 82.14% 

Sensitivity: 92.86% 

False positive rate: 28.57% 
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