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UNCONSTRAINED FACE IDENTIFICATION WITH MULTI-SCALE BLOCK-BASED
CORRELATION
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ABSTRACT

Many approaches to unconstrained face identification exploit
small patches which are unaffected by distortions outside of their
locality. However, small patches have limited discriminative ability,
making accurate patch matching difficult. We propose a novel block-
based approach to exploit the greater discriminative information in
larger areas, while maintaining robustness to local variations. A test-
ing block contains several neighbouring testing patches. We identify
all the matching training patches in a block jointly, using normal-
ized cross correlation (NCC), as a means of reducing the uncertainty
of each matching patch with the addition of the neighbouring patch
information. We further propose a multi-scale extension in which
we carry out block-based matching at several block sizes, where a
larger block contains more neighbouring testing patches, to com-
bine complementary information across scales for further robust-
ness. For evaluation, we use two unconstrained datasets, cropped La-
belled Faces in the Wild (LFWCrop) and Unconstrained Facial Im-
ages (UFI). Our new approach is able to significantly improve identi-
fication accuracy over existing patch-based methods, in the presence
of uncontrolled pose, expression and lighting variations.

Index Terms— Face identification, multi-patch blocks, block-
based correlation, multi-scale approach, unconstrained variations.

1. INTRODUCTION

Face identification performance degrades in real-world scenarios.
Variations caused by pose and illumination changes can be greater
than those caused by a subject’s identity [1]. Because these vari-
ations affect different regions differently, many approaches treat
images as ensembles of small patches [2–21], assuming that each
patch is unaffected by variations outside its locality. Recognition
can be performed by finding a matching training patch for each test-
ing patch. In many current methods, this is done independently for
each patch. For example, sparse representation classification (SRC)
forms an estimate of each testing patch, as a linear combination
of the training patches, independently of the other testing patches;
the independent patch classifications can then be combined in a
voting scheme, for final classification [2]. More recently, a match-
ing scheme using normalized cross correlation (NCC), or Pearson’s
correlation coefficient, was applied to unconstrained face identifica-
tion [3], which identifies the matching patches independently based
on maximum patch-sized correlation. Variations can also be handled
by including or synthesizing diverse conditions in training data. This
has been used for patch-based and holistic SRC [2, 22, 23], as well
as collaborative representation classification (CRC) [24].

Patch-based approaches can also be used to deal with variable
lighting conditions. By assuming piecewise constant lighting across
the patches [4,25,26], illumination normalization filters such as self

quotient images (SQIs) [5] and gradientfaces [6] can be applied in
small patches, each with a near even lighting condition, to remove
low frequency illumination variation while maintaining fine details.
Local binary patterns (LBPs) [7], and its variants [8–14] , describe
small patches, assuming constant or low-frequency lighting in each
patch, by encoding high frequency variations which represent facial
structure. The NCC metric can cancel the constant lighting differ-
ence between small patches for comparison(e.g., [3, 26]).

Small patches can be limited in their discriminative ability,
making their independent matching prone to errors. However,
larger matching areas may be unidentifiable due to local appearance
changes across the region. Multi-scale approaches combine the
complementary information at several patch-sizes to mitigate this
problem. Multi-scale LBPs (MLBP) [15, 16] concatenate LBPs at
several patch-sizes to improve robustness, the hierarchical MLBP
(HMLBP) reduces feature dimensionality while maintaining dis-
criminative information by selecting a single appropriate scale for
each image location [17]. The pattern of oriented edge magnitudes
(POEM) [18] is a multi-scale descriptor where local appearance is
captured by accumulating gradient magnitudes in small patches,
and the larger structure is captured by extracting LBPs from larger
blocks in the derived gradient images. Multi-scale extensions to
subspace-based approaches, including SRC (MSRC) [19] and CRC
(MPCRC) [20, 21], have also improved robustness.

In this paper, we extend the previous work towards a more ro-
bust approach to unconstrained facial image identification. Our ex-
tension includes two novel aspects. First, we propose a block-based
approach, in place of the conventional patch-based approach, to im-
prove discrimination for face identification. A testing block contains
a number of neighboring patches which are matched jointly to re-
duce the uncertainty for each individual matching training patch. By
optimising both the matching training patches and their illumina-
tion difference with the corresponding testing patches, we exploit
the discriminative information in larger regions while maintaining
robustness to local variations. Second, we propose a multi-scale
extension to our block-based matching, where a block at a higher
scale contains more neighbouring testing patches, to further enlarge
the matching areas and combine their complementary information to
improve discrimination and robustness. We have compared our new
approach with existing approaches on two difficult unconstrained fa-
cial databases and achieved improved performance.

2. MULTI-SCALE BLOCK-BASED CORRELATION

2.1. Block Correlation

Our idea for improving facial identification accuracy can be illus-
trated with Fig. 1. Assume that we compare a testing image against
a training image from person s, and that the testing image is divided



Fig. 1: The selection of 4 matching training patches for a testing
block of size 2 patches by 2 patches. Matches are found jointly,
within search windows, indicated by dotted lines, to allow for local
displacement and enforce a semantic constraint on matching patches.

into small patches located by the patch indexes k1, k2, .... Conven-
tional patch-based methods tend to process these patches indepen-
dently. In our new method, we aim to match a number of neighbor-
ing patches jointly. For example, in Fig. 1 we show the match of a
block of 2 patches by 2 patches, k1, k2, k3 and k4. By considering a
larger block area we will normally gain greater discriminative abil-
ity, and hence reduce uncertainty of the individual matching training
patches, compared to the patch-based method. However, because of
the potential pose/expression variations between unconstrained im-
ages, large, perfectly matching blocks may not exist. We assume that
these local variations can be modeled by allowing for certain local
displacement of the matching training patches, as an approximate
model for the lack of pose/expression/alignment constraints on the
data, but maintaining a similar geometric relationship, as a semantic
constraint on valid facial structure, as Fig. 1 illustrates.

Let Y = (y1,y2, ...,yK) represent a testing image divided into
K small, partially overlapped patches, where yk is the kth patch,
with origin (top-left corner coordinates) (ik, jk). For simplicity, we
assume that all patches have the same size: M×N pixels. We apply
the same representation to the training images such that the training
image of person s, Xs, has an expression Xs = (xs

1,x
s
2, ...,x

s
L),

where xs
l is the lth M ×N -sized patch. One person can have more

than one training image. We use the NCC as a comparison met-
ric and identify matching blocks to improve identification accuracy.
One reduced form of our approach, described in [3], identified the in-
dividual matching patches independently. The NCC of two patches,
yk and xs

l , is measured with the expression:

R(yk,x
s
l ) =

∑
m,n[yk(m,n)− µk][x

s
l (m,n)− µs

l ]

σkσs
l

(1)

where yk(m,n) denotes a pixel at (m,n) inside patch yk, the sum
is over all pixels in the patch, µk is the mean pixel value of patch
yk, and σk is the zero-mean Euclidean norm of patch yk, i.e., σ2

k =∑
m,n[yk(m,n)− µk]

2. The same definitions apply to the training
patch xs

l with mean pixel value µs
l and zero-mean Euclidean norm

σs
l . In [3], given a testing image, the matching training patches were

identified independently, by maximizing R(yk,x
s
l ) for each testing

patch yk over the possible matching training patches xs
l . In this pa-

per, we extend this approach to identifying larger matching blocks,
as illustrated in Fig. 1, to improve discrimination. Let Yk1,kQ =
(yk1 ,yk2 , ...,ykQ) represent a testing block with Q patches (block
Y1,K contains all patches in the image and hence is equivalent to
the whole image Y), and let Xs

l1,lQ
= (gl1x

s
l1
, gl2x

s
l2
, ..., glQxs

lQ
)

represent a possible matching training block, where the individual

matching training patch locations lq (q = 1, 2, ..., Q) may be a
nonlinear function of the corresponding testing patch locations kq
to account for the potential nonlinear local displacement between
the training and testing images; glq is the gain for each local train-
ing patch, to compensate for lighting differences. We can assume
that glq is a constant within each small patch, but can be variable
across the block. This is identical to a piece-wise constant lighting
model [4, 25, 26]. The NCC for the two blocks can be written as:

R(Yk1,kQ ,Xs
l1,lQ) = R(yk1yk2 ...ykQ , gl1x

s
l1gl2x

s
l2 ...glQxs

lQ)

=

∑Q
q=1 glq

∑
m,n ykq (m,n)xs

lq (m,n)− Tµk1,kQµs
l1,lQ

σk1,kQσs
l1,lQ

(2)

where T = QMN is short-hand notation for the total number of
pixels in each block, µs

l1,lQ
and σs

l1,lQ
are the global mean pixel

value and zero-mean Euclidean norm of training block Xs
l1,lQ

, i.e.,

µs
l1,lQ =

1

T

Q∑
k=q

glk
∑
m,n

xs
lk(m,n) (3)

[σs
l1,lQ ]2 =

Q∑
k=1

g2lk
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[xs
lk(m,n)]2 − T [µs

l1,lQ ]2 (4)

The above (3) and (4) apply to µk1,kQ and σk1,kQ , the global mean
and zero-mean Euclidean norm of testing block Yk1,kQ (without
the gain terms). Unlike previous approaches (e.g., the single patch
based NCC [3], and SRC [19]) in which the individual patches are
treated independently, in the proposed block-based NCC (2) there is
no assumption of independence between the patches in a block. We
will use (2) to identify the matching patches jointly.

2.2. Optimal Block Matching

Given a testing block Yk1,kQ , we seek the best concatenation of
training patches to estimate a matching training block. To constrain
the estimate to valid facial blocks, we formulate the estimation as a
constrained maximization problem. We give a general expression:

RL(Yk1,kQ , X̂s
l1,lQ)

= max
Xs

l1,lQ

R(Yk1,kQ ,Xs
l1,lQ)L(Xs

l1,lQ |Yk1,kQ)α (5)

where X̂s
l1,lQ

represents the optimal estimate of the matching train-
ing block, found from the training data for person s. The opti-
mal estimate has maximum block-based NCC subject to a constraint
defining valid facial blocks, represented by the multiplying likeli-
hood function L(Xs

l1,lQ
|Yk1,kQ)α, that Xs

l1,lQ
is likely to be a

valid matching block for the given testing block Yk1,kQ , where α

denotes the weight for the constraint; RL(Yk1,kQ ,Xs
l1,lQ

) repre-
sents the constrained NCC and the value associated with the optimal
estimate is RL(Yk1,kQ , X̂s

l1,lQ
).

As an example, in our experiments, we use a simple semantic
constraint on facial structure, by enforcing that the selected training
patches have a similar geometric relationship to their correspond-
ing testing patches. Specifically, we assume that the location of the
matching training patch lq corresponding to testing patch kq can be
expressed as a function of kq as follows:

lq = kq + h+ δq (6)

where h represents a common displacement for all patches in the
block, which may be caused by some major misalignment which



affects all the patches equally, and δq represents a local displacement
for a specific patch, which may be caused, for example, by random
local pose or expression changes. Based on (6), we use a simple
expression for the likelihood function:

L(Xs
l1,lQ |Yk1,kQ) =

Q∏
q=1

I∆q [lq − (kq + h)] (7)

where I∆q [lq − (kq + h)] is an indicator function of the form

I∆q [lq − (kq + h)] =

{
1 if ||lq − (kq + h)|| ≤ ∆q

0 if ||lq − (kq + h)|| > ∆q
(8)

where ∆q is a threshold on the small local displacement δq . Some
displacement is allowed to account for local variations in pose, ex-
pression and alignment, but an upper limit is used as a semantic
constraint, requiring that the matching training patches maintain a
similar geometric relationship to the corresponding testing patches.

We use a computationally efficient iterative algorithm to solve
the above constrained maximization problem (5). Given a testing
block Yk1,kQ = (yk1 ,yk2 , ...,ykQ), we find an initial estimate
X̂s

l1,lQ
= (ĝl1 x̂

s
l1
, ĝl2 x̂

s
l2
, ..., ĝlQ x̂s

lQ
) by separately estimating

each matching training patch x̂s
lq by maximizing the patch-based

NCC R(ykq ,x
s
lq ) with a unit gain ĝlq . Then we update this ini-

tial estimate by alternately re-estimating each matching training
patch, with gain, to maximize the block-based constrained NCC
RL(Yk1,kQ ,Xs

l1,lQ
); in re-estimating a specific training patch, the

other training patches are fixed to their latest estimates. This al-
ternate re-estimation process iterates until convergence is achieved.
This algorithm manages to estimate the optimal training patches one
patch at a time, subject to the constraints of all the other patches
in the block, and hence can be calculated efficiently. It is shown
that this algorithm converges in terms of generating a block estimate
that always increases the block-sized, constrained NCC with each
iteration. More details are given below.

2.3. Multi-Scale Block-Based Face Identification

Our approach can be extended to include scores for variable block-
sizes, where block-size is defined by the number of patches in a
block, to combine the complementary information across scales. Our
block-based approach maintains invariance to local variations, even
at large block-sizes, by optimizing the constituent patches. For ex-
ample, at the testing block location k1, we identify a number of
matching training blocks for the testing blocks Yk1,kQ with vari-
able sizes Q, using (5), and then calculate the overall matching score
between these blocks using the following expression

Scores(k1) =
∑
Q

RL(Yk1,kQ , X̂s
l1,lQ)wQ (9)

where wQ denotes the weight for block size Q, reflecting its impor-
tance in the combination. The overall score for person s is formed by
summing Scores(k1) over all the testing block locations k1. In our
experiments, we have found that this multi-scale approach produces
superior results to any individual block size, indicating its ability to
capture complementary information from the variable-sized blocks.

3. EXPERIMENTAL EVALUATION

3.1. Experimental Settings

We assessed the efficacy of our approach for face identification in
unconstrained conditions using the cropped Labelled Faces in the

Fig. 2: Top: A testing image and 7 training images from LFWCrop.
Bottom: A testing image and 7 training images from UFI.

Wild (LFWCrop) [27] and Unconstrained Facial Images (UFI) [28]
datasets. The LFWCrop dataset [27], contains pre-cropped images
resized to 64 × 64 pixels, but still exhibiting real-life conditions,
including misalignment. On LFWCrop we used a subset of 86 sub-
jects with 11-20 images each, previously used in [22]. As in [22],
we used 7 images per subject for training, and the rest for testing.
The UFI set contains 605 subjects with a single testing image each,
and an average of 7.1 training images. We used the cropped ver-
sion for our experiments, and resized the images to 64 × 64 pixels.
Example LFWCrop and UFI images are shown in Fig. 2. Through-
out our NCC-based experiments, we used 8 × 8 patches with an
overlap of 4 pixels. In the cropped images the facial features still
exhibit various degrees of local variation, but occupy similar image
regions (e.g. Fig. 2). Therefore, we assume that the common patch
displacement h = 0 in (6), and the local patch displacement δq for
each matching training patch is subject to a 30× 30 search window
surrounding the corresponding testing patch, i.e., ∆q = 15 in (8).
In our approach matching patches may be selected from any of the
training images for a subject, and the gain value for each matching
training patch, glq , is estimated by golden section search within the
range [0.1, 3]. Unless otherwise indicated, we weighted scores of
blocks from 1× 1 up to 3× 3 patches on LFWCrop, and from 1× 1
up to 4× 4 patches on UFI, with the weights tuned for each dataset,
where smaller scales generally receive higher weights.

3.2. Experimental Results on LFWCrop and UFI

On the LFWCrop dataset we compare our new Multi-scale Block-
based NCC (M-BNCC) approach to a number of recent approaches
to unconstrained face identification with the same training/testing
subsets, particularly local patch-based and multi-scale techniques.
These include a recent extension to the SRC framework [22], the
HMLBP approach [17], the MPCRC [20] approach, and finally, the
original patch-based NCC matching scheme [3]. We obtained the
results for these approaches by running the code provided by the au-
thors, except for the patch-based NCC which may be viewed as a
special case of our M-BNCC approach. Table 1 shows the identi-
fication accuracy for each approach, indicating that our M-BNCC
approach comfortably outperforms the existing approaches. As re-
ported in [22], the SRC approach achieved identification accuracy
of 34.36% on the same sets of LFW images we use, but manu-
ally cropped and resized. The performance drop may be caused by
the uncontrolled misalignment in LFWCrop images. As reported
in [20], MPCRC was able to achieve accuracy of 49% on LFW sub-
sets with pre-alignment, unlike the mis-aligned LFWCrop images.

Table 1: Identification rate (%) on LFWCrop, comparing our new
M-BNCC approach with others.

SRC [22] MPCRC [20] HMLBP [17] NCC [3] M-BNCC
28.37 15.04 36.28 48.37 65.27



Table 2: Identification rate (%) on UFI, comparing our new M-
BNCC approach with others.

LBP [7] LDP [13] FS-LBP [14] POEM [18] M-BNCC
55.04 50.25 63.31 67.11 74.55

As reported in [3], on a subset of 50 LFW subjects, each with 5
training images and 3 testing images, and after applying the pose
and illumination normalization process from [29], the original patch-
based NCC scheme and the HMLBP approach achieved identifica-
tion rates of 54% and 47% respectively. However, on a larger dataset
than this, with no normalization process, we are able to produce
higher identification rates using our M-BNCC approach, as shown
in Table 1. Some other techniques have presented superior identifi-
cation accuracy on various subsets of the LFW database, but make
use of additional external data to improve performance (e.g., in [30]
discriminative similarity measures were learned, exploiting negative
background examples not seen in the database, to boost SVM clas-
sification and in [31] a probabilistic learning approach used weakly
labelled data from internet searches to increase the amount of train-
ing data) or use many more training images per subject (e.g., [12]).

On the more recent UFI dataset we compare with the baseline
approaches presented in [28]. The baseline UFI results include the
traditional LBP approach [7], and the more recent Local Derivative
Patterns (LDPs), which extracts LBPs in high order derivative space
[13], Face-Specific LBP (FS-LBP) [14], where facial feature points
are identified to extract LBPs from, rather than extracting LBPs in a
regular grid, and the multi-resolution POEM descriptor [18] which
achieved the best baseline performance. These results are cited from
[28] and presented in Table 2, along with our M-BNCC results. To
the best of our knowledge, our approach has superior performance
to the best published results on this unconstrained dataset.

3.3. Further M-BNCC Algorithmic Evaluation

For the new M-BNCC approach, we evaluate the importance of the
joint estimation of the matching patches in each block, and the se-
mantic constraint to confine the matching patches’ locations, towards
improving the identification accuracy. Table 3 shows the identi-
fication accuracy on the LFWCrop dataset, at several block-sizes,
with the joint estimation or without joint estimation (i.e., the match-
ing patches are searched independently of one another), and with
the semantic constraint or without this constraint (i.e., the matching
patches can come from anywhere in the training images). We can
see that our joint estimation significantly improves the discriminative
ability, in terms of identification accuracy. Our semantic constraint
on the location of selected matching training patches also improves
identification accuracy. In Table 4 we present the identification ac-
curacy with and without our estimated gain factors, glq , showing
that they attenuate the effect of local illumination variation on the

Table 3: Identification rate (%) on LFWCrop based on variable-
sized blocks, e.g., 2 patches × 2 patches, showing the importance of
joint estimation of the matching patches and the semantic constraint.

Estimation / Constraint 2× 2 3× 3 4× 4

Independent / Unconstrained 19.22 20.00 21.55
Joint / Unconstrained 53.18 50.39 47.75

Independent / Constrained 24.96 25.27 25.89
Joint / Constrained 63.87 60.62 59.22

Table 4: Identification rate (%) on LFWCrop at 3 block-sizes, with
optimised gain factors, glq , and without gain optimisation (glq = 1)

Gain value 2× 2 3× 3 4× 4
glq = 1 56.74 52.40 47.13

Optimised glq 63.87 60.62 59.22

selection of a matching block, increasing identification accuracy. At
larger block-sizes, where non-uniform lighting is more likely, the
benefit of optimised gain factors is more pronounced.

Table 5 shows the benefit of our multi-scale combination, across
4 block-sizes. We can see that each scale included in the weighted
combination incrementally improves the identification accuracy by
providing complementary information. We note that different scales
classify different images correctly, and that a multi-scale combina-
tion can correctly classify face images that none of the constituent
scales could. Finally, Fig. 3 summarizes the convergence of the it-
erative algorithm, showing the average number of iterations, and the
initial and final constrained block-based NCC scores, on LFWCrop,
at 4 block-sizes. Our search for the optimal matching block increases
the NCC at each iteration. We stop the iteration when none of the
block’s constituent patches are updated between iterations.

Table 5: Identification rate (%) on UFI by the proposed M-BNCC,
showing the combination of 4 block-sizes, from 1 × 1 up to 4 × 4,
and the contribution of each additional scale to the final accuracy.

1× 1 +2× 2 +3× 3 +4× 4
72.56 73.72 74.05 74.55

Fig. 3: Increase in constrained block correlation with iteration, at 4
block-sizes.

4. CONCLUSION

This paper studied the problem of face identification with uncon-
strained pose, expression and lighting variations. We extended the
previous patch-based NCC matching scheme to block-based match-
ing. A block contains several neighbouring patches. We identify all
the matching patches in a block jointly to reduce the uncertainty in
identifying each individual matching patch. By estimating the light-
ing difference between small matching patches, we attenuate the ef-
fect of illumination variation across the block. Finally, by combin-
ing our block-based classification scores at several block-sizes, we
combine the complementary information across scales for further ro-
bustness. On two unconstrained datasets we have shown the benefit
of our contributions, and improved identification accuracy signifi-
cantly over existing patch-based methods. In future, we would like
to develop an algorithm for learning weights to combine scales more
effectively, rather than manually tuning.
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