10 research outputs found

    Central Actions of 3α,5α-THP Involving NMDA and GABA\u3csub\u3eA\u3c/sub\u3e Receptors Regulate Affective and Sexual Behavior of Female Rats

    Get PDF
    © Copyright © 2020 Frye, Qrareya, Llaneza and Paris. The neurosteroid, 5α-pregnan-3α-ol-20-one (known as “allopregnanolone” or 3α,5α-THP), is produced in the midbrain ventral tegmental area (VTA), independent of peripheral sources of progestogens, where it has potential actions at N-methyl-D-aspartate (NMDA) and GABAA receptors to facilitate rodent sexual behavior. Progestogens can also have anti-anxiety effects, but whether these involve actions of centrally-derived 3α,5α-THP or these receptors to support reproductively-relevant behavior is not well understood. We investigated the extent to which 3α,5α-THP’s actions via NMDA and/or GABAA receptors in the midbrain VTA influence reproductive behaviors. Estradiol-primed, ovariectomized/adrenalectomized (OVX/ADX) rats received midbrain VTA infusions of vehicle, an NMDA receptor blocker (MK-801; 200 ng), or a GABAA receptor blocker (bicuculline; 100 ng) followed by a second infusion of vehicle or 3α,5α-THP (100 ng). Reproductively-relevant behaviors were assessed: sexual (paced mating), anxiety-like (elevated plus maze), and social (partner preference, social interaction) behavior. Compared to vehicle, intra-VTA infusions of MK-801 exerted anxiolytic-like effects on elevated plus maze behavior and enhanced lordosis. Unlike prior observations in gonadally-intact rats, intra-VTA bicuculline had no effect on the behavior of OVX/ADX rats (likely due to a floor effect). Subsequent infusions of 3α,5α-THP reversed effects on lordosis and infusions of bicuculline inhibited 3α,5α-THP-facilitated lordosis. Thus, NMDA and GABAA receptors may act as mediators for reproductive behavioral effects of 3α,5α-THP in the midbrain VTA

    Patterns of substance use across the first year of college and associated risk factors

    Get PDF
    Starting college is a major life transition. This study aims to characterize patterns of substance use across a variety of substances across the first year of college and identify associated factors. We used data from the first cohort (N = 2056, 1240 females) of the “Spit for Science” sample, a study of incoming freshmen at a large urban university. Latent transition analysis was applied to alcohol, tobacco, cannabis, and other illicit drug uses measured at the beginning of the fall semester and midway through the spring semester. Covariates across multiple domains – including personality, drinking motivations and expectancy, high school delinquency, peer deviance, stressful events, and symptoms of depression and anxiety – were included to predict the patterns of substance use and transitions between patterns across the first year. At both the fall and spring semesters, we identified three subgroups of participants with patterns of substance use characterized as: (1) use of all four substances; (2) alcohol, tobacco, and cannabis use; and (3) overall low substance use. Patterns of substance use were highly stable across the first year of college: most students maintained their class membership from fall to spring, with just 7% of participants in the initial low substance users transitioning to spring alcohol, tobacco, and cannabis users. Most of the included covariates were predictive of the initial pattern of use, but covariates related to experiences across the first year of college were more predictive of the transition from the low to alcohol, tobacco, and cannabis user groups. Our results suggest that while there is an overall increase in alcohol use across all students, college students largely maintain their patterns of substance use across the first year. Risk factors experienced during the first year may be effective targets for preventing increases in substance use

    Targeting Ovarian Cancer and Endothelium with an Allosteric PTP4A3 Phosphatase Inhibitor

    Get PDF
    Overexpression of protein tyrosine phosphatase PTP4A oncoproteins is common in many human cancers and is associated with poor patient prognosis and survival. We observed elevated levels of PTP4A3 phosphatase in 79% of human ovarian tumor samples, with significant overexpression in tumor endothelium and pericytes. Furthermore, PTP4A phosphatases appear to regulate several key malignant processes, such as invasion, migration, and angiogenesis, suggesting a pivotal regulatory role in cancer and endothelial signaling pathways. While phosphatases are attractive therapeutic targets, they have been poorly investigated because of a lack of potent and selective chemical probes. In this study, we disclose that a potent, selective, reversible, and noncompetitive PTP4A inhibitor, JMS-053, markedly enhanced microvascular barrier function after exposure of endothelial cells to vascular endothelial growth factor or lipopolysaccharide. JMS-053 also blocked the concomitant increase in RhoA activation and loss of Rac1. In human ovarian cancer cells, JMS-053 impeded migration, disrupted spheroid growth, and decreased RhoA activity. Importantly, JMS-053 displayed anticancer activity in a murine xenograft model of drug resistant human ovarian cancer. These data demonstrate that PTP4A phosphatases can be targeted in both endothelial and ovarian cancer cells, and confirm that RhoA signaling cascades are regulated by the PTP4A family

    Emerging Therapeutics to Overcome Chemoresistance in Epithelial Ovarian Cancer: A Mini-Review

    No full text
    Ovarian cancer is the fifth leading cause of cancer death among women and the most lethal gynecologic malignancy. One of the leading causes of death in high-grade serous ovarian cancer (HGSOC) is chemoresistant disease, which may present as intrinsic or acquired resistance to therapies. Here we discuss some of the known molecular mechanisms of chemoresistance that have been exhaustively investigated in chemoresistant ovarian cancer, including drug efflux pump multidrug resistance protein 1 (MDR1), the epithelial–mesenchymal transition, DNA damage and repair capacity. We also discuss novel therapeutics that may address some of the challenges in bringing approaches that target chemoresistant processes from bench to bedside. Some of these new therapies include novel drug delivery systems, targets that may halt adaptive changes in the tumor, exploitation of tumor mutations that leave cancer cells vulnerable to irreversible damage, and novel drugs that target ribosomal biogenesis, a process that may be uniquely different in cancer versus non-cancerous cells. Each of these approaches, or a combination of them, may provide a greater number of positive outcomes for a broader population of HGSOC patients

    Patterns of Substance Use Across the First Year of College and Associated Risk Factors

    No full text
    Starting college is a major life transition. This study aims to characterize patterns of substance use across a variety of substances across the first year of college and identify associated factors. We used data from the first cohort (N=2056, 1240 females) of the Spit for Science sample, a study of incoming freshmen at a large urban university. Latent transition analysis was applied to alcohol, tobacco, cannabis, and other illicit drug uses measured at the beginning of the fall semester and midway through the spring semester. Covariates across multiple domains - including personality, drinking motivations and expectancy, high school delinquency, peer deviance, stressful events, and symptoms of depression and anxiety - were included to predict the patterns of substance use and transitions between patterns across the first year. At both the fall and spring semesters, we identified three subgroups of participants with patterns of substance use characterized as: 1) use of all four substances; 2) alcohol, tobacco, and cannabis use; and 3) overall low substance use. Patterns of substance use were highly stable across the first year of college: most students maintained their class membership from fall to spring, with just 7% of participants in the initial low substance users transitioning to spring alcohol, tobacco, and cannabis users. Most of the included covariates were predictive of the initial pattern of use, but covariates related to experiences across the first year of college were more predictive of the transition from the low to alcohol, tobacco, and cannabis user groups. Our results suggest that while there is an overall increase in alcohol use across all students, college students largely maintain their patterns of substance use across the first year. Risk factors experienced during the first year may be effective targets for preventing increases in substance use

    High content screening miniaturization and single cell imaging of mature human feeder layer-free iPSC-derived neurons

    No full text
    Human induced pluripotent stem cell (iPSC)-derived neurons are being increasingly used for high content imaging and screening. However, iPSC-derived neuronal differentiation and maturation is time-intensive, often requiring >8 weeks. Unfortunately, the differentiating and maturing iPSC-derived neuronal cultures also tend to migrate and coalesce into ganglion-like clusters making single-cell analysis challenging, especially in miniaturized formats. Using our defined extracellular matrix and low oxygen culturing conditions for the differentiation and maturation of human cortical neurons, we further modified neuronal progenitor cell seeding densities and feeder layer-free culturing conditions in miniaturized formats (i.e., 96 well) to decrease neuronal clustering, enhance single-cell identification and reduce edge effects usually observed after extended neuronal cell culture. Subsequent algorithm development refined capabilities to distinguish and identify single mature neurons, as identified by NeuN expression, from large cellular aggregates, which were excluded from image analysis. Incorporation of astrocyte conditioned medium during differentiation and maturation periods significantly increased the percentage (i.e., ∼10% to ∼30%) of mature neurons (i.e., NeuN+) detected at 4-weeks post-differentiation. Pilot, proof of concept studies using this optimized assay system yielded negligible edge effects and robust Z-factors in population-based as well as image-based neurotoxicity assay formats. Moreover, moxidectin, an FDA-approved drug with documented neurotoxic adverse effects, was identified as a hit using both screening formats. This miniaturized, feeder layer-free format and image analysis algorithm provides a foundational imaging and screening platform, which enables quantitative single-cell analysis of differentiated human neurons

    Credentialing and Pharmacologically Targeting PTP4A3 Phosphatase as a Molecular Target for Ovarian Cancer

    No full text
    High grade serous ovarian cancer (OvCa) frequently becomes drug resistant and often recurs. Consequently, new drug targets and therapies are needed. Bioinformatics-based studies uncovered a relationship between high Protein Tyrosine Phosphatase of Regenerating Liver-3 (PRL3 also known as PTP4A3) expression and poor patient survival in both early and late stage OvCa. PTP4A3 mRNA levels were 5–20 fold higher in drug resistant or high grade serous OvCa cell lines compared to nonmalignant cells. JMS-053 is a potent allosteric small molecule PTP4A3 inhibitor and to explore further the role of PTP4A3 in OvCa, we synthesized and interrogated a series of JMS-053-based analogs in OvCa cell line-based phenotypic assays. While the JMS-053 analogs inhibit in vitro PTP4A3 enzyme activity, none were superior to JMS-053 in reducing high grade serous OvCa cell survival. Because PTP4A3 controls cell migration, we interrogated the effect of JMS-053 on this cancer-relevant process. Both JMS-053 and CRISPR/Cas9 PTP4A3 depletion blocked cell migration. The inhibition caused by JMS-053 required the presence of PTP4A3. JMS-053 caused additive or synergistic in vitro cytotoxicity when combined with paclitaxel and reduced in vivo OvCa dissemination. These results indicate the importance of PTP4A3 in OvCa and support further investigations of the lead inhibitor, JMS-053
    corecore