123 research outputs found

    Identification of cattle-derived volatiles that modulate the behavioral response of the biting midge culicoides nubeculosus

    Get PDF
    Identification of host-derived volatiles is an important step towards the development of novel surveillance and control tools for Culicoides biting midges. In this study, we identified compounds from headspace collections of cattle hair and urine that modulate the behavioral response of Culicoides nubeculosus, a research model species with a similar host-range as the vectors of Bluetongue disease and Schmallenberg disease in Europe. Combined gas chromatography and electroantennographic detection (GC-EAD) analysis revealed 23 bioactive compounds, of which 17, together with octanal, were evaluated in a two-choice behavioral assay in the presence of CO2. Decanal, 2-phenylethanal, 1-octen-3-ol, 2-ethylhexanol, 3-methylindole, phenol, and 3-ethylphenol elicited attraction of host seeking C. nubeculosus, whereas heptanal, octanal, nonanal, 3-propylphenol, and 4-propylphenol inhibited the insects’ attraction to CO2, when compared to CO2 alone. 6-Methyl-5-hepten-2-one, 3-methylphenol, 4-methylphenol, and 4-ethylphenol elicited both attraction and inhibition. The behavioral responses were dependent on the concentration tested. Our results show that cattle-derived odors have the potential to be used for the manipulation of the behavior of Culicoides biting midges

    Genomic Selective Constraints in Murid Noncoding DNA

    Get PDF
    Recent work has suggested that there are many more selectively constrained, functional noncoding than coding sites in mammalian genomes. However, little is known about how selective constraint varies amongst different classes of noncoding DNA. We estimated the magnitude of selective constraint on a large dataset of mouse-rat gene orthologs and their surrounding noncoding DNA. Our analysis indicates that there are more than three times as many selectively constrained, nonrepetitive sites within noncoding DNA as in coding DNA in murids. The majority of these constrained noncoding sites appear to be located within intergenic regions, at distances greater than 5 kilobases from known genes. Our study also shows that in murids, intron length and mean intronic selective constraint are negatively correlated with intron ordinal number. Our results therefore suggest that functional intronic sites tend to accumulate toward the 5' end of murid genes. Our analysis also reveals that mean number of selectively constrained noncoding sites varies substantially with the function of the adjacent gene. We find that, among others, developmental and neuronal genes are associated with the greatest numbers of putatively functional noncoding sites compared with genes involved in electron transport and a variety of metabolic processes. Combining our estimates of the total number of constrained coding and noncoding bases we calculate that over twice as many deleterious mutations have occurred in intergenic regions as in known genic sequence and that the total genomic deleterious point mutation rate is 0.91 per diploid genome, per generation. This estimated rate is over twice as large as a previous estimate in murids

    Low-energy positron interactions with xenon

    Get PDF
    Low-energy interactions of positrons with xenon have been studied both experimentally and theoretically. The experimental measurements were carried out using a trap-based positron beam with an energy resolution of ̃80 meV, while the theoretical calculat

    A simple statistical test of taxonomic or functional homogeneity using replicated microbiome sequencing samples

    Get PDF
    One important question in microbiome analysis is how to assess the homogeneity of the microbial composition in a given environment, with respect to a given analysis method. Do different microbial samples taken from the same environment follow the same taxonomic distribution of organisms, or the same distribution of functions? Here we provide a non-parametric statistical “triangulation test” to address this type of question. The test requires that multiple replicates are available for each of the biological samples, and it is based on three-way computational comparisons of samples. To illustrate the application of the test, we collected three biological samples taken from different locations in one piece of human stool, each represented by three replicates, and analyzed them using MEGAN. (Despite its name, the triangulation test does not require that the number of biological samples or replicates be three.) The triangulation test rejects the null hypothesis that the three biological samples exhibit the same distribution of taxa or function (error probability ≤0.05), indicating that the microbial composition of the investigated human stool is not homogenous on a macroscopic scale, suggesting that pooling material from multiple locations is a reasonable practice. We provide an implementation of the test in our open source program MEGAN Community Edition

    Targeted metagenomics reveals association between severity and pathogen co-detection in infants with respiratory syncytial virus

    Get PDF
    Respiratory syncytial virus (RSV) is the leading cause of hospitalisation for respiratory infection in young children. RSV disease severity is known to be age-dependent and highest in young infants, but other correlates of severity, particularly the presence of additional respiratory pathogens, are less well understood. In this study, nasopharyngeal swabs were collected from two cohorts of RSV-positive infants 100 pathogens, including all common respiratory viruses and bacteria, from samples collected from 433 infants, that burden of additional viruses is common (111/433, 26%) but only modestly correlates with RSV disease severity. In contrast, there is strong evidence in both cohorts and across age groups that presence of Haemophilus bacteria (194/433, 45%) is associated with higher severity, including much higher rates of hospitalisation (odds ratio 4.25, 95% CI 2.03–9.31). There is no evidence for association between higher severity and other detected bacteria, and no difference in severity between RSV genotypes. Our findings reveal the genomic diversity of additional pathogens during RSV infection in infants, and provide an evidence base for future causal investigations of the impact of co-infection on RSV disease severity

    Evidence for Pervasive Adaptive Protein Evolution in Wild Mice

    Get PDF
    The relative contributions of neutral and adaptive substitutions to molecular evolution has been one of the most controversial issues in evolutionary biology for more than 40 years. The analysis of within-species nucleotide polymorphism and between-species divergence data supports a widespread role for adaptive protein evolution in certain taxa. For example, estimates of the proportion of adaptive amino acid substitutions (alpha) are 50% or more in enteric bacteria and Drosophila. In contrast, recent estimates of alpha for hominids have been at most 13%. Here, we estimate alpha for protein sequences of murid rodents based on nucleotide polymorphism data from multiple genes in a population of the house mouse subspecies Mus musculus castaneus, which inhabits the ancestral range of the Mus species complex and nucleotide divergence between M. m. castaneus and M. famulus or the rat. We estimate that 57% of amino acid substitutions in murids have been driven by positive selection. Hominids, therefore, are exceptional in having low apparent levels of adaptive protein evolution. The high frequency of adaptive amino acid substitutions in wild mice is consistent with their large effective population size, leading to effective natural selection at the molecular level. Effective natural selection also manifests itself as a paucity of effectively neutral nonsynonymous mutations in M. m. castaneus compared to humans

    The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart

    Get PDF
    Motivation: Integrative mathematical and statistical models of cardiac anatomy and physiology can play a vital role in understanding cardiac disease phenotype and planning therapeutic strategies. However, the accuracy and predictive power of such models is dependent upon the breadth and depth of noninvasive imaging datasets. The Cardiac Atlas Project (CAP) has established a large-scale database of cardiac imaging examinations and associated clinical data in order to develop a shareable, web-accessible, structural and functional atlas of the normal and pathological heart for clinical, research and educational purposes. A goal of CAP is to facilitate collaborative statistical analysis of regional heart shape and wall motion and characterize cardiac function among and within population groups

    Evaluation of host-derived volatiles for trapping Culicoides biting midges (Diptera: Ceratopogonidae)

    Get PDF
    Culicoides biting midges (Diptera: Ceratopognidae) cause pain and distress through blood feeding, and transmit viruses that threaten both animal and human health worldwide. There are few effective tools for monitoring and control of biting midges, with semiochemical-based strategies offering the advantage of targeting host-seeking populations. In previous studies, we identified the host preference of multiple Culicoides species, including Culicoides impunctatus, as well as cattle-derived compounds that modulate the behavioral responses of C. nubeculosus under laboratory conditions. Here, we test the efficacy of these compounds, when released at different rates, in attracting C. impunctatus under field conditions in Southern Sweden. Traps releasing 1-octen-3-ol, decanal, phenol, 4-methylphenol or 3-propylphenol, when combined with carbon dioxide (CO2), captured significantly higher numbers of C. impunctatus compared to control traps baited with CO2 alone, with low release rates (0.1 mg h−1, 1 mg h−1) being generally more attractive. In contrast, traps releasing octanal or (E)-2-nonenal at 1 mg h−1 and 10 mg h−1 collected significantly lower numbers of C. impunctatus than control traps baited with CO2 only. Nonanal and 2-ethylhexanol did not affect the attraction of C. impunctatus when compared to CO2 alone at any of the release rates tested. The potential use of these semiochemicals as attractants and repellents for biting midge control is discussed
    corecore