800 research outputs found

    Pd0-Catalyzed Intramoleculara-Arylation of Sulfones: Domino Reactions in the Synthesis of Functionalized Tetrahydroisoquinolines

    Get PDF
    A new strategy for the synthesis of tetrahydroisoquinolines based on the Pd(0)-catalyzed intramolecular α-arylation of sulfones is reported. The combination of this Pd-catalyzed reaction with intermolecular Michael and aza-Michael reactions allows the development of two- and three-step domino processes to synthesize diversely functionalized scaffolds from readily available starting materials. KEYWORDS: arylation; domino reactions; nitrogen heterocycles; palladium; sulfone

    Resource Speed Optimization for Two-Stage Flow-Shop Scheduling

    Get PDF
    Multiple resource co-scheduling algorithms and pipelined execution models are becoming increasingly popular, as they better capture the heterogeneous nature of modern architectures. The problem of scheduling tasks composed of multiple stages tied to different resources goes under the name of “flow-shop scheduling”. This problem, studied since the ’50s to optimize production plants, is known to be NP-hard in the general case. In this paper, we consider a specific instance of the flow-shop task model that captures the behavior of a two-resource (DMA-CPU) system. In this setting, we study the problem of selecting the optimal operating speed of either resource with the goal of minimizing power consumption while meeting schedulability constraints. We derive an algorithm that finds an exact solution to the problem in polynomial time, hence it is suitable for online operation even in the presence of variable real-time workload.CNS-1035736CNS-1219064CNS-1302563Ope

    Ptychographic hyperspectral spectromicroscopy with an extreme ultraviolet high harmonic comb

    Get PDF
    We demonstrate a new scheme of spectromicroscopy in the extreme ultraviolet (EUV) spectral range, where the spectral response of the sample at different wavelengths is imaged simultaneously. It is enabled by applying ptychographical information multiplexing (PIM) to a tabletop EUV source based on high harmonic generation, where four spectrally narrow harmonics near 30 nm form a spectral comb structure. Extending PIM from previously demonstrated visible wavelengths to the EUV/X-ray wavelengths promises much higher spatial resolution and more powerful spectral contrast mechanism, making PIM an attractive spectromicroscopy method in both the microscopy and the spectroscopy aspects. Besides the sample, the multicolor EUV beam is also imaged in situ, making our method a powerful beam characterization technique. No hardware is used to separate or narrow down the wavelengths, leading to efficient use of the EUV radiation

    Tafoflora sin-eruptiva de la formación agua de la zorra (triásico superior) cuenca cuyana, mendoza, Argentina

    Get PDF
    In the North of Mendoza Province, at Paramillos de Uspallata locality, Triassic sedimentary rocks outcrop. These Triassic beds include four formations: Paramillos, Agua de la Zorra, Portezuelo Bayo and Los Colorados. The Agua de la Zorra Formation is characterized by deposition in a deltaic and lacustrine system. The aims of this contribution are: (1) to realize a systematic study of new material found in the Agua de la Zorra Formation and (2) to analize the influence of the potential of preservation and the volcanism in the Agua de la Zorra taphoflora in contrast with other Triassic units. Plant remains were systematically collected and compared with taphofloras from other Triassic formations of the Cuyana Basin. The systematic study from the Agua de la Zorra Formation allowed the determination of 21 taxa, nine of which have been cited in a previous contribution and 12 were described for the first time for the Agua de la Zorra formation. There are differences in the taxonomic diversity between the taphofloras recovered from Potrerillos and Paramillos formations and these differences are linking with differences in biostratinomic process in each fluvial system and linked with the evidence of volcanic processes in these areas. The differences in diversity in the taphofloras of the Cacheuta and Agua de la Zorra formations can be more associated to ecological differences than variations in the taphonomic processes in each of the lake systems.Fil: Pedernera, Tomas Ezequiel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales; ArgentinaFil: Ottone, Eduardo Guillermo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Mancuso, Adriana Cecilia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales; ArgentinaFil: Benavente, Cecilia Andrea. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales; ArgentinaFil: AbarzĂşa Cutroni, Fernando Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales; Argentin

    Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

    Get PDF
    Temporal isolation is one of the most significant challenges that must be addressed before Multi-Processor Systems-on-Chip (MPSoCs) can be widely adopted in mixed-criticality systems with both time-sensitive real-time (RT) applications and performance-oriented non-real-time (NRT) applications. Specifically, the main memory subsystem is one of the most prevalent causes of interference, performance degradation and loss of isolation. Existing memory bandwidth regulation mechanisms use static, dynamic, or predictive DRAM bandwidth management techniques to restore the execution time of an application under contention as close as possible to the execution time in isolation. In this paper, we propose a novel distribution-driven regulation whose goal is to achieve a timeliness objective formulated as a constraint on the probability of meeting a certain target execution time for the RT applications. Using existing interconnect-level Performance Monitoring Units (PMU), we can observe the Cumulative Distribution Function (CDF) of the per-request memory latency. Regulation is then triggered to enforce first-order stochastical dominance with respect to a desired reference. Consequently, it is possible to enforce that the overall observed execution time random variable is dominated by the reference execution time. The mechanism requires no prior information of the contending application and treats the DRAM subsystem as a black box. We provide a full-stack implementation of our mechanism on a Commercial Off-The-Shelf (COTS) platform (Xilinx Ultrascale+ MPSoC), evaluate it using real and synthetic benchmarks, experimentally validate that the timeliness objectives are met for the RT applications, and demonstrate that it is able to provide 2.2x more overall throughput for NRT applications compared to DRAM bandwidth management-based regulation approaches

    In situ Remediation Technologies Associated with Sanitation Improvement: An Opportunity for Water Quality Recovering in Developing Countries

    Get PDF
    The access to safe water is of great importance to reduce the spread of diseases caused by water-related pathogens and to assure the life quality to the human-beings. According to the World Health Organization (WHO, 2011), diarrhea, for example, is responsible for two million deaths every year, mainly among children under the age of five. The environmental effects of some pollutants (e.g. endocrine disruptors, organic compounds) remain unclear and the harmful consequences of the exposure to contaminated water are certainly an important issue for the next decades. Moreover, many research have linked water quality to health problems, such as cancer (Rodrigues et al., 2003; Han et al., 2009), insufficient uptake of nutrients and trace-metals (Lind & Glynn 1999), diabetes, cerebrovascular and kidney disease (Meliker et al., 2007). The costs and benefits of water quality have been the topic of stimulating discussion in the scientific community (Isaac, 1998; Hajkowicz et al., 2008; Saz-Salazar et al., 2009) because water quality decrease implies not only loss of lives, but also economic damages. The costs of the anthropogenic eutrophication reach US2.2billionintheUnitedStates(Doddsetal.,2009)andUS2.2 billion in the United States (Dodds et al., 2009) and US187.2 million in England and Wales every year (Pretty et al. 2002). The reduction of nutrient loading to the aquatic systems worldwide is the cornerstone of artificial eutrophication control (Smith et al., 1999), with repercussions in other fields like public health and economics. The anthropogenic impacts on the quality of urban water bodies in developing countries are frequently exacerbated by poor levels of sanitation and inadequate water and wastewater management. Pressure from urban areas on the water quality was reported in Argentina (Almeida et al., 2007), Brazil (Jordão et al., 2007), India (Suthar et al., 2010) and Mexico (Bravo-Inclan et al., 2008). Rapid shifts in the land use patterns, unplanned urbanization and inefficient resources allocation are further aggravating environmental problems in such 256 Ecological Water Quality - Water Treatment and Reuse nations. Restrictions to the water uses are increasing as the pollution of rivers and lakes is offering more risks to the human health and to the maintenance of the ecological balance. Within this context, the water resources management plays an important role in the conciliation of the water uses and the long-term sustainability. The in situ remediation of rivers, lakes and reservoirs is a decentralized alternative that may be convenient in some cases in comparison to off-site solutions. The main advantages of the in situ approach are, besides the relative small period of time required to its implementation, the suitability of the in situ facilities to the regions with lack of available areas to build off-site treatment plants (e.g. highly urbanized areas) and the lower expenses with pumping structures. Although it takes more time and requires more investments, the implementation of sanitation infrastructure is also necessary. With the increase of the negative environmental impacts induced by the anthropogenic activities, the remediation of aquatic systems became an alternative to restore the ecological functions of the ecosystems and accelerate their recovery. The first and most important step in a remediation project is to define the remedial action aims to be accomplished at the site, involving the desirable mechanisms of treatment - biological (e.g. phytoremediation), physical and/or chemical (e.g. oxidation, air stripping, ion exchange, precipitation). Most of the current technologies for aquatic systems remediation were adapted from unitary processes used for drinking water production, industrial purposes or wastewater treatment. The flotation, for example, has been used in mining activities to separate the mineral of interest from the gangue since 1893 (Hoover, 1912). The technology was then adapted to treat water and wastewater through dissolved air flotation (e.g. Heinänen et al., 1995). Ultrafiltration membranes in turn have been mainly used for drinking water production (2 million m3 /day worldwide according to Laîné et al., 2000). According to the same authors, the oldest water industry with ultrafiltration plant started to operate in 1988 in France. The membranes are becoming cheaper over the years and the technology is more attractive for remediation of surface waters at the present time

    3D printed PEEK/HA composites for bone tissue engineering applications: effect of material formulation on mechanical performance and bioactive potential

    Get PDF
    Polyetheretherketone (PEEK) is a biocompatible polymer widely used for biomedical applications. Because it is biologically inert, bioactive phases, such as nano-hydroxyapatite (HA), have been added to PEEK in order to improve its bioactivity. 3D printing (3DP) technologies are being increasingly used today to manufacture patient specific devices and implants. However, processing of PEEK is challenging due to its high melting point which is above 340 °C. In this study, PEEK-based filaments containing 10 wt% of pure nano-HA, strontium (Sr)- doped nano-HA and Zinc (Zn)-doped nano-HA were produced via hot-melt extrusion and subsequently 3D printed via fused deposition modelling (FDM), following an initial optimization process. The raw materials, extruded filaments and 3D printed samples were characterized in terms of physicochemical, thermal and morphological analysis. Moreover, the mechanical performance of 3D printed specimens was assessed via tensile tensing. Although an increase in the melting point and a reduction in crystallization temperature was observed with the addition of HA and doped HA to pure PEEK, there was no noticeable increase in the degree of crystallinity. Regarding the mechanical behavior, no significant differences were detected following the addition of the inorganic phases to the polymeric matrix, although a small reduction in the ultimate tensile strength (~14%) and Young's modulus (~5%) in PEEK/HA was observed in comparison to pure PEEK. Moreover, in vitro bioactivity of 3D printed samples was evaluated via a simulated body fluid immersion test for up to 28 days; the formation of apatite was observed on the surfaces of sample surfaces containing HA, SrHA and ZnHA. These results indicate the potential to produce bioactive, 3DP PEEK composites for challenging applications such as in craniofacial bone repair

    3D Printed Strontium and Zinc Doped Hydroxyapatite Loaded PEEK for Craniomaxillofacial Implants

    Get PDF
    In this study, Strontium (Sr) and Zinc (Zn) doped-HA nanoparticles were synthesized and incorporated into polyetheretherketone (PEEK) up to 30 wt.% and processed by a novel approach i.e., fused deposition modelling (FDM) 3D printing for the production of patient specific cranial implants with improved bioactivity and the required mechanical performance. Filaments were produced via extrusion and subsequently 3D-printed using FDM. To further improve the bioactivity of the 3D-printed parts, the samples were dip-coated in polyethylene glycol-DOPA (PEG-DOPA) solution. The printing quality was influenced by filler loading, but was not significantly influenced by the nature of doped-HA. Hence, the printing conditions were optimized for each sample. Micro-CT and Scanning Electron Microscopy (SEM) showed a uniform distribution of bioceramic particles in PEEK. Although agglomeration of particles increased with increase in filler loadings. Differential Scanning Calorimetry (DSC) showed that the melting point and crystallinity of PEEK increased with an increase in doped-HA loading from 343 °C to 355 °C and 27.7% to 34.6%, respectively. Apatite formation was confirmed on the 3D-printed samples after immersion in simulated body fluid (SBF) for 7, 14 and 28 days via SEM, X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The tensile strength and impact strength decreased from 75 MPa to 51 MPa and 14 kJ/m(2) to 4 kJ/m(2), respectively, while Young’s modulus increased with increasing doped-HA content from 2.8 GPa to 4.2 GPa. However, the tensile strengths of composites remained in the range of human cortical bone i.e., ≥50 MPa. In addition, there was a slight increase in mechanical strength after 28 days immersion which was attributed to apatite formation. Water contact angle showed that the hydrophilicity of the samples improved after coating the 3D-printed samples with PEG-DOPA. Hence, based on the results, the 3D-printed PEEK nanocomposites with 20 wt.% doped-HA is selected as the best candidate for the 3D-printing of craniomaxillofacial implants

    Could FaRP-Like Peptides Participate in Regulation of Hyperosmotic Stress Responses in Plants?

    Get PDF
    International audienceThe ability to respond to hyperosmotic stress is one of the numerous conserved cellular processes that most of the organisms have to face during their life. In metazoans, some peptides belonging to the FMRFamide-like peptide (FLP) family were shown to participate in osmoregulation via regulation of ion channels; this is, a well-known response to hyperosmotic stress in plants. Thus, we explored whether FLPs exist and regulate osmotic stress in plants. First, we demonstrated the response of Arabidopsis thaliana cultured cells to a metazoan FLP (FLRF). We found that A. thaliana express genes that display typical FLP repeated sequences, which end in RF and are surrounded by K or R, which is typical of cleavage sites and suggests bioactivity; however, the terminal G, allowing an amidation process in metazoan, seems to be replaced by W. Using synthetic peptides, we showed that amidation appears unnecessary to bioactivity in A. thaliana, and we provide evidence that these putative FLPs could be involved in physiological processes related to hyperosmotic stress responses in plants, urging further studies on this topic
    • …
    corecore