38 research outputs found

    Isospin breaking effects in the X(3872) resonance

    Get PDF
    In this paper we study the effects of isospin breaking in the dynamical generation of the X(3872) state. We also calculate the ratio of the branching fractions of the XX decaying into J/ψJ/\psi with two and three pions, which has been measured experimentally to be close to unity. Together with the X(3872), of positive C-parity, we predict the existence of a negative C-parity state and we comment on which decay channel is more promising to observe this state.Comment: 10 pages, 6 figures, study on the line shape of the X(3872) adde

    Charm and Hidden Charm Scalar Resonances in Nuclear Matter

    Get PDF
    We study the properties of the scalar charm resonances Ds0(2317)D_{s0}(2317) and D0(2400)D_0(2400), and the theoretical hidden charm state X(3700) in nuclear matter. We find that for the Ds0(2317)D_{s0}(2317) and X(3700) resonances, with negligible and small width at zero density, respectively, the width becomes about 100MeV100 {\rm MeV} and 200MeV200 {\rm MeV} at normal nuclear matter density, accordingly. For D0(2400)D_0(2400) the change in width is relatively less important. We discuss the origin of this new width and trace it to reactions occurring in the nucleus. We also propose a possible experimental test for those modifications in nuclear matter, which will bring valuable information on the nature of those scalar resonances and the interaction of DD mesons with nucleons.Comment: 3 pages, 3 figures, to appear in the proceedings of the International Conference on Particles And Nuclei (PANIC08), Eilat, Israel, November 9-14, 200

    An algorithm for network community structure determination by surprise

    Full text link
    Graphs representing real world systems may be studied from their underlying community structure. A community in a network is an intuitive idea for which there is no consensus on its objective mathematical definition. The most used metric in order to detect communities is the modularity, though many disadvantages of this parameter have already been noticed in the literature. In this work, we present a new approach based on a different metric: the surprise. Moreover, the biases of different community detection algorithms and benchmark networks are thoroughly studied, identified and commented about.Comment: 29 pages, 6 figures, 7 table

    To Google or not : differences on how online searches predict names and faces

    Get PDF
    Word and face recognition are processes of interest for a large number of fields, including both clinical psychology and computer calculations. The research examined here aims to evaluate the role of an online frequency’s ability to predict both face and word recognition by examining the stability of these processes in a given amount of time. The study will further examine the differences between traditional theories and current contextual frequency approaches. Reaction times were recorded through both a logarithmic transformation and through a Bayesian approach. The Bayes factor notation was employed as an additional test to support the evidence provided by the data. Although differences between face and name recognition were found, the results suggest that latencies for both face and name recognition are stable for a period of six months and online news frequencies better predict reaction time for both classical frequentist analyses. These findings support the use of the contextual diversity approach

    The small-world of 'Le Petit Prince': Revisiting the word frequency distribution

    Full text link
    [EN] Many complex systems are naturally described through graph theory, and different kinds of systems described as networks present certain important characteristics in common. One of these features is the so-called scale-free distribution for its node s connectivity, which means that the degree distribution for the network s nodes follows a power law. Scale-free networks are usually referred to as small-world because the average distance between their nodes do not scale linearly with the size of the network, but logarithmically. Here we present a mathematical analysis on linguistics: the word frequency effect for different translations of the Le Petit Prince in different languages. Comparison of word association networks with random networks makes evident the discrepancy between the random Erdo¿s-Re¿ny model for graphs and real-world networks.Gamermann ., D.; Moret-Tatay, C.; Navarro Pardo, E.; Fernández De Córdoba, P. (2016). The small-world of 'Le Petit Prince': Revisiting the word frequency distribution. Digital Scholarship in the Humanities. 32(2):301-311. doi:10.1093/llc/fqw005S30131132

    Large scale evaluation of differences between network-based and pairwise sequence-alignment-based methods of dendrogram reconstruction

    Get PDF
    [EN] Dendrograms are a way to represent relationships between organisms. Nowadays, these are inferred based on the comparison of genes or protein sequences by taking into account their differences and similarities. The genetic material of choice for the sequence alignments (all the genes or sets of genes) results in distinct inferred dendrograms. In this work, we evaluate differences between dendrograms reconstructed with different methodologies and for different sets of organisms chosen at random from a much larger set. A statistical analysis is performed to estimate fluctuations between the results obtained from the different methodologies that allows us to validate a systematic approach, based on the comparison of the organisms' metabolic networks for inferring dendrograms. This has the advantage that it allows the comparison of organisms very far away in the evolutionary tree even if they have no known ortholog gene in common. Our results show that dendrograms built using information from metabolic networks are similar to the standard sequence-based dendrograms and can be a complement to them.All authors received funding from the European Union Seventh Framework Program (FP7/2007-2013) under grant agreement number 308518 (CyanoFactory) (https://ec.europa.eu/research/fp7/index_en.cfm).The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Gamermann, D.; Montagud, A.; Conejero, JA.; Fernández De Córdoba, P.; Urchueguía Schölzel, JF. (2019). Large scale evaluation of differences between network-based and pairwise sequence-alignment-based methods of dendrogram reconstruction. PLoS ONE. 14(9):1-13. https://doi.org/10.1371/journal.pone.0221631S113149Robinson, D. F., & Foulds, L. R. (1981). Comparison of phylogenetic trees. Mathematical Biosciences, 53(1-2), 131-147. doi:10.1016/0025-5564(81)90043-2Day, W. H. E. (1985). Optimal algorithms for comparing trees with labeled leaves. Journal of Classification, 2(1), 7-28. doi:10.1007/bf01908061Pattengale, N. D., Gottlieb, E. J., & Moret, B. M. E. (2007). Efficiently Computing the Robinson-Foulds Metric. Journal of Computational Biology, 14(6), 724-735. doi:10.1089/cmb.2007.r012Woese, C. R., & Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proceedings of the National Academy of Sciences, 74(11), 5088-5090. doi:10.1073/pnas.74.11.5088Ciccarelli, F. D., Doerks, T., von Mering, C., Creevey, C. J., Snel, B., & Bork, P. (2006). Toward Automatic Reconstruction of a Highly Resolved Tree of Life. Science, 311(5765), 1283-1287. doi:10.1126/science.1123061Kurt Lienau, E., DeSalle, R., Allard, M., Brown, E. W., Swofford, D., Rosenfeld, J. A., … Planet, P. J. (2010). The mega-matrix tree of life: using genome-scale horizontal gene transfer and sequence evolution data as information about the vertical history of life. Cladistics, 27(4), 417-427. doi:10.1111/j.1096-0031.2010.00337.xWu, M., & Eisen, J. A. (2008). A simple, fast, and accurate method of phylogenomic inference. Genome Biology, 9(10), R151. doi:10.1186/gb-2008-9-10-r151Wu, D., Hugenholtz, P., Mavromatis, K., Pukall, R., Dalin, E., Ivanova, N. N., … Eisen, J. A. (2009). A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature, 462(7276), 1056-1060. doi:10.1038/nature08656Mai, H., Lam, T.-W., & Ting, H.-F. (2017). A simple and economical method for improving whole genome alignment. BMC Genomics, 18(S4). doi:10.1186/s12864-017-3734-2Feng, B., Lin, Y., Zhou, L., Guo, Y., Friedman, R., Xia, R., … Tang, J. (2017). Reconstructing Yeasts Phylogenies and Ancestors from Whole Genome Data. Scientific Reports, 7(1). doi:10.1038/s41598-017-15484-5Rokas, A., Williams, B. L., King, N., & Carroll, S. B. (2003). Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature, 425(6960), 798-804. doi:10.1038/nature02053JEFFROY, O., BRINKMANN, H., DELSUC, F., & PHILIPPE, H. (2006). Phylogenomics: the beginning of incongruence? Trends in Genetics, 22(4), 225-231. doi:10.1016/j.tig.2006.02.003Gamermann, D., Montagud, A., Conejero, J. A., Urchueguía, J. F., & de Córdoba, P. F. (2014). New Approach for Phylogenetic Tree Recovery Based on Genome-Scale Metabolic Networks. Journal of Computational Biology, 21(7), 508-519. doi:10.1089/cmb.2013.0150Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., & Barabási, A.-L. (2000). The large-scale organization of metabolic networks. Nature, 407(6804), 651-654. doi:10.1038/35036627Clemente, J. C., Satou, K., & Valiente, G. (2007). Phylogenetic reconstruction from non-genomic data. Bioinformatics, 23(2), e110-e115. doi:10.1093/bioinformatics/btl307Deyasi, K., Banerjee, A., & Deb, B. (2015). Phylogeny of metabolic networks: A spectral graph theoretical approach. Journal of Biosciences, 40(4), 799-808. doi:10.1007/s12038-015-9562-0Kanehisa, M. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 28(1), 27-30. doi:10.1093/nar/28.1.27Reyes, R., Gamermann, D., Montagud, A., Fuente, D., Triana, J., Urchueguía, J. F., & de Córdoba, P. F. (2012). Automation on the Generation of Genome-Scale Metabolic Models. Journal of Computational Biology, 19(12), 1295-1306. doi:10.1089/cmb.2012.0183Gross, J. L., Yellen, J., & Zhang, P. (Eds.). (2013). Handbook of Graph Theory. doi:10.1201/b16132Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443-453. doi:10.1016/0022-2836(70)90057-4Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30(1-7), 107-117. doi:10.1016/s0169-7552(98)00110-xAllesina, S., & Pascual, M. (2009). Googling Food Webs: Can an Eigenvector Measure Species’ Importance for Coextinctions? PLoS Computational Biology, 5(9), e1000494. doi:10.1371/journal.pcbi.1000494Winter, C., Kristiansen, G., Kersting, S., Roy, J., Aust, D., Knösel, T., … Grützmann, R. (2012). Google Goes Cancer: Improving Outcome Prediction for Cancer Patients by Network-Based Ranking of Marker Genes. PLoS Computational Biology, 8(5), e1002511. doi:10.1371/journal.pcbi.1002511Sukumaran, J., & Holder, M. T. (2010). DendroPy: a Python library for phylogenetic computing. Bioinformatics, 26(12), 1569-1571. doi:10.1093/bioinformatics/btq228Henikoff, S., & Henikoff, J. G. (1992). Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences, 89(22), 10915-10919. doi:10.1073/pnas.89.22.10915Dayhoff MO, Schwartz RM. Chapter 22: A model of evolutionary change in proteins. In: in Atlas of Protein Sequence and Structure; 1978.Suzuki, R., & Shimodaira, H. (2006). Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics, 22(12), 1540-1542. doi:10.1093/bioinformatics/btl117Plata, G., Henry, C. S., & Vitkup, D. (2014). Long-term phenotypic evolution of bacteria. Nature, 517(7534), 369-372. doi:10.1038/nature1382
    corecore