16 research outputs found

    A toolkit modeling approach for sustainable forest management planning: Achieving balance between science and local needs

    Get PDF
    To assist forest managers in balancing an increasing diversity of resource objectives, we developed a toolkit modeling approach for sustainable forest management (SFM). The approach inserts a meta-modeling strategy into a collaborative modeling framework grounded in adaptive management philosophy that facilitates participation among stakeholders, decision makers, and local domain experts in the meta-model building process. The modeling team works iteratively with each of these groups to define osential questions, identify data resources, and then determine whether available tools can be applied or adapted, or whether new tools can be rapidly created to fit the need. The desired goal of the process is a linked series of domain-specific models (tools) that balances generalized "top-down" models (i.e., scientific models developed without input from the local system) with case-specific customized "bottom-up" models that are driven primarily by local needs. Information flow between models is organized according to vertical (i.e., between scale) and horizontal (i.e., within scale) dimensions. We illustrate our approach within a 2.1 million hectare forest planning district in central Labrador, a forested landscape where social hnd ecological values receive a higher priority than economic values. However, the focus of this paper is on the process of how SFM modeling tools and concepts can be rapidly assembled and applied in new locations, balancing efficient transfer of science with adaptation to local needs. We use the Labrador case study to illustrate strengths and challenges uniquely associated with a meta-modeling approach to integrated modeling as it fits within the broader collaborative modeling framework. Principle advantages of the approach include the scientific rigor introduced by peer-reviewed models, combined with the adaptability of meta-modeling. A key challenge is the limited transparency of scientific models to different participatory groups. This challenge can be overcome by frequent and substantive two-way communication among different groups at appropriate times in the model-building process, combined with strong leadership that includes strategic choices when assembling the modeling team. The toolkit approach holds promise for extending beyond case studies, without compromising the bottom-up flow of needs and information, to inform SFM planning using the best available science

    Consequences of various landscape-scale ecosystem management strategies and fire cycles on age-class structure and harvest in boreal forests

    Get PDF
    At the landscape scale, one of the key indicators of sustainable forest management is the age-class distribution of stands, since it provides a coarse synopsis of habitat potential, structural complexity, and stand volume, and it is directly modified by timber extraction and wildfire. To explore the consequences of several landscape-scale boreal forest management strategies on age-class structure in the Mauricie region of Quebec, we used spatially explicit simulation modelling. Our study investigated three different harvesting strategies (the one currently practiced and two different strategies to maintain late seral stands) and interactions between fire and harvesting on stand age-class distribution. We found that the legacy of initial forested age structure and its spatial configuration can pose short- (<50 years) to medium-term (150-300 years) challenges to balancing wood supply and ecological objectives. Also, ongoing disturbance by fire, even at relatively long cycles in relation to historic levels, can further constrain the achievement of both timber and biodiversity goals. For example, when fire was combined with management, harvest shortfalls occurred in all scenarios with a fire cycle of 100 years and most scenarios with a fire cycle of 150 years. Even a fire cycle of 500 years led to a reduction in older forest when its maintenance was not a primary constraint. Our results highlight the need to consider the broad-scale effects of natural disturbance when developing ecosystem management policies and the importance of prioritizing objectives when planning for multiple resource use

    Managing understory light conditions in boreal mixedwoods through variation in the intensity and spatial pattern of harvest: A modelling approach

    Get PDF
    In the context of partial harvesting, adequately managing post-harvest light conditions are essential to obtain a desired composition of tree species regeneration. The objective of this study was to determine how varying the intensity and spatial pattern of harvest would affect understory light conditions in boreal mixedwood stands of northwestern Quebec using the spatially explicit SORTIE-ND light model. The model was evaluated based on comparisons of observed and predicted light levels in both mapped and un-mapped plots. In mapped plots, reasonably accurate predictions of the overall variation in light levels were obtained, but predictions tended to lack spatial precision. In un-mapped plots, SORTIE-ND accurately predicted stand-level mean GLI (Gap Light Index) under a range of harvest intensities. The model was then used to simulate nine silvicultural treatments based on combinations of three intensities of overstory removal (30%, 45% and 60% of basal area) and three harvest patterns (uniform, narrow strips, large gaps). Simulations showed that increasing overstory removal had less impact on light conditions with uniform harvests, and a more marked effect with more aggregated harvest patterns. Whatever the harvest intensity, uniform cuts almost never created high light conditions (GLI > 50%). Gap cuts, on the other hand, resulted in up to 40% of microsites receiving GLI > 50%. Our results suggest that either a 30% strip or gap cut or a 45–60% uniform partial harvest could be used to accelerate the transition from an aspen dominated composition to a mixedwood stand because both types of cut generate the greatest proportion of moderately low light levels (e.g., 15–40% GLI). These light levels tend to favour an accelerated growth response among shade-tolerant conifers, while preventing excessive recruitment of shade-intolerant species. A better understanding of how spatial patterns of harvest interact with tree removal intensity to affect understory light conditions can provide opportunities for designing silvicultural prescriptions that are tailored to species’ traits and better suited to meet a variety of management objectives

    Globally consistent climate sensitivity of natural disturbances across boreal and temperate forest ecosystems

    Get PDF
    Disturbance regimes are changing in forests across the world in response to global climate change. Despite the profound impacts of disturbances on ecosystem services and biodiversity, assessments of disturbances at the global scale remain scarce. Here, we analyzed natural disturbances in boreal and temperate forest ecosystems for the period 2001-2014, aiming to 1) quantify their within- and between-biome variation and 2) compare the climate sensitivity of disturbances across biomes. We studied 103 unmanaged forest landscapes with a total land area of 28.2 x 10(6) ha, distributed across five continents. A consistent and comprehensive quantification of disturbances was derived by combining satellite-based disturbance maps with local expert knowledge of disturbance agents. We used Gaussian finite mixture models to identify clusters of landscapes with similar disturbance activity as indicated by the percent forest area disturbed as well as the size, edge density and perimeter-area-ratio of disturbed patches. The climate sensitivity of disturbances was analyzed using Bayesian generalized linear mixed effect models and a globally consistent climate dataset. Within-biome variation in natural disturbances was high in both boreal and temperate biomes, and disturbance patterns did not vary systematically with latitude or biome. The emergent clusters of disturbance activity in the boreal zone were similar to those in the temperate zone, but boreal landscapes were more likely to experience high disturbance activity than their temperate counterparts. Across both biomes high disturbance activity was particularly associated with wildfire, and was consistently linked to years with warmer and drier than average conditions. Natural disturbances are a key driver of variability in boreal and temperate forest ecosystems, with high similarity in the disturbance patterns between both biomes. The universally high climate sensitivity of disturbances across boreal and temperate ecosystems indicates that future climate change could substantially increase disturbance activity.Peer reviewe

    Sustainable Forest Management Preferences of Interest Groups in Three Regions with Different Levels of Industrial Forestry: An Exploratory Attribute-Based Choice Experiment

    Get PDF
    The challenge of sustainable forest management is to integrate diverse and sometimes conflicting management objectives. In order to achieve this goal, we need a better understanding of the aspects influencing the preferences of diverse groups and how these groups make trade-offs between different attributes of SFM. We compare the SFM preferences of interest groups in regions with different forest use histories based on the reasoning that the condition of the forest reflects the forest use history of the area. The condition of the forest also shapes an individual’s forest values and attitudes. These held values and attitudes are thought to influence SFM preferences. We tested whether the SFM preferences vary amongst the different interest groups within and across regions. We collected data from 252 persons using a choice experiment approach, where participants chose multiple times among different options described by a combination of attributes that are assigned different levels. The novelty of our approach was the use of choice experiments in the assessment of regional preference differences. Given the complexity of interregional comparison and the small sample size, this was an exploratory study based on a purposive rather than random sample. Nevertheless, our results suggest that the aggregation of preferences of all individuals within a region does not reveal all information necessary for forest management planning since opposing viewpoints could cancel each other out and lead to an interpretation that does not reflect possibly polarised views. Although based on a small\ud sample size, the preferences of interest groups within a region are generally statistically significantly different from each other; however preferences of interest groups across regions are also significantly different. This illustrates the potential importance of assessing heterogeneity by region and by group

    Tree population dynamics of some old sub-boreal spruce stands

    No full text
    Disturbance at the scale of single trees shapes the development of boreal forest ecosystems, especially in 'overmature' or 'old-growth' stages, despite the acknowledged role of fire as a catastrophic agent of stand reinitiation. This study has reconstructed the population dynamics of fourteen Sub-Boreal Spruce stands (composed of Picea engelmanni x glauca, Abies lasiocarpa and lesser amounts of Pinus contorta and Populus tremuloides) since the last stand destroying wildfire. Identification of the post-disturbance cohort and subsequent recruitment provided a means of assessing the relative role of small-scale (single-tree) disturbance and large-scale, catastrophic disturbance on species composition and stand development. The results suggest that SBS stands are self-perpetuating, and that although Picea may disappear from some stands it is maintained within forests of this zone. Presumably due to its high shade tolerance, Abies recruitment (when present) occurred uniformly throughout the stand's history. Picea ingress was associated with more exacting conditions, and it can return in sufficient numbers to perpetuate itself after long periods of exclusion. Minor disturbances were important in accelerating the reinitiation of Picea below the forest canopy. In many stands Abies was the most abundant species but this study suggests that although Picea regeneration often occurred in lower numbers it is maintained as a dominant overstory species due to poorer Abies recruitment to larger size classes. In many of the stands there was evidence of an earlier Populus component that may have played an important role in conifer establishment after wildfire. The faster growing Populus may ameliorate harsh environmental conditions to the benefit of conifer regeneration. This process may be especially important in the Sub-Boreal Spruce zone where long periods of colonization (on average 75 years but up to 100 years) are common. Another part of this project focused on defining the later stages of forest stand development in terms of tree population biology. Old-growth was recognized as the stage when the rate of tree regeneration and mortality, and thus age structure, are influenced more by single tree processes than by the stand initiating disturbance (Hayward 1991). The tree population structures and old-growth attributes described for SBS stands suggest that this definition was a useful and objective ecological tool for ranking the later stages of stand development. In the SBS structural data was found appropriate for identifying the later stages of stand development through multivariate analysis. Attributes found to be strongly correlated with stand development, such as the number of large downed logs and snags, reflect the importance of single-tree mortalities to the old-growth stage.Forestry, Faculty ofGraduat

    Influence of Natural and Anthropogenic Linear Canopy Openings on Forest Structural Patterns Investigated Using LiDAR

    No full text
    In much of the commercial boreal forest, dense road networks and energy corridors have been developed to access natural resources with unintended and poorly understood effects on surrounding forest structure. In this study, we compare the effects of anthropogenic and natural linear openings on surrounding forest conditions in black spruce stands (gap fraction, tree and sapling height, and density). Forest structure within a 100 m band around the edges of anthropogenic (roads and power lines), natural linear openings (streams), and a reference black spruce forest was measured by identifying individual stems and canopy gaps on recent high density airborne LiDAR canopy height models. CUSUM curves were used to assess the distance of edge influence. Forests surrounding anthropogenic openings were found to be gappier, less dense, and have smaller trees than those around natural openings. Forests were denser around natural and anthropogenic linear openings than in the reference forest with edge effects observed up to 24&ndash;75 m and 18&ndash;54 m, respectively, into the forest. A high density of saplings in the gappier forests surrounding anthropogenic openings may eventually lead to a higher forest biomass in the zone area surrounding roads as is currently observed around natural openings
    corecore