41 research outputs found
BDA-410 Treatment Reduces Body Weight and Fat Content by Enhancing Lipolysis in Sedentary Senescent Mice
Loss of muscle mass and force with age leads to fall risk, mobility impairment, and reduced quality of life. This article shows that BDA-410, a calpain inhibitor, induced loss of body weight and fat but not lean mass or skeletal muscle proteins in a cohort of sedentary 23-month-old mice. Food and water intake and locomotor activity were not modified, whereas BDA-410 treatment decreased intramyocellular lipid and perigonadal fat, increased serum nonesterified fatty acids, and upregulated the genes mediating lipolysis and oxidation, lean phenotype, muscle contraction, muscle transcription regulation, and oxidative stress response. This finding is consistent with our recent report that lipid accumulation in skeletal myofibers is significantly correlated with slower fiber-contraction kinetics and diminished power in obese older adult mice. A proteomic analysis and immunoblot showed downregulation of the phosphatase PPP1R12B, which increases phosphorylated myosin half-life and modulates the calcium sensitivity of the contractile apparatus. This study demonstrates that BDA-410 exerts a beneficial effect on skeletal muscle contractility through new, alternative mechanisms, including enhanced lipolysis, upregulation of "lean phenotype-related genes," downregulation of the PP1R12B phosphatase, and enhanced excitation- contraction coupling. This single compound holds promise for treating age-dependent decline in muscle composition and strength.Facultad de Ciencias MédicasInstituto de Investigaciones Bioquímicas de La PlataCentro de Investigaciones Inmunológicas Básicas y Aplicada
BDA-410 Treatment Reduces Body Weight and Fat Content by Enhancing Lipolysis in Sedentary Senescent Mice
Loss of muscle mass and force with age leads to fall risk, mobility impairment, and reduced quality of life. This article shows that BDA-410, a calpain inhibitor, induced loss of body weight and fat but not lean mass or skeletal muscle proteins in a cohort of sedentary 23-month-old mice. Food and water intake and locomotor activity were not modified, whereas BDA-410 treatment decreased intramyocellular lipid and perigonadal fat, increased serum nonesterified fatty acids, and upregulated the genes mediating lipolysis and oxidation, lean phenotype, muscle contraction, muscle transcription regulation, and oxidative stress response. This finding is consistent with our recent report that lipid accumulation in skeletal myofibers is significantly correlated with slower fiber-contraction kinetics and diminished power in obese older adult mice. A proteomic analysis and immunoblot showed downregulation of the phosphatase PPP1R12B, which increases phosphorylated myosin half-life and modulates the calcium sensitivity of the contractile apparatus. This study demonstrates that BDA-410 exerts a beneficial effect on skeletal muscle contractility through new, alternative mechanisms, including enhanced lipolysis, upregulation of "lean phenotype-related genes," downregulation of the PP1R12B phosphatase, and enhanced excitation- contraction coupling. This single compound holds promise for treating age-dependent decline in muscle composition and strength.Fil: Pereyra, Andrea Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina. Wake Forest School of Medicine; Estados UnidosFil: Wang, Zhong-Min. Wake Forest School of Medicine; Estados UnidosFil: Messi, Maria Laura. Wake Forest School of Medicine; Estados UnidosFil: Zhang, Tan. Wake Forest School of Medicine; Estados UnidosFil: Wu, Hanzhi. Wake Forest School of Medicine; Estados UnidosFil: Register, Thomas C.. Wake Forest School of Medicine; Estados UnidosFil: Forbes, Elizabeth. Wake Forest School of Medicine; Estados UnidosFil: Devarie Baez, Nelmi O.. Wake Forest School of Medicine; Estados UnidosFil: Files, Daniel Clark. Wake Forest School of Medicine; Estados UnidosFil: Abba, Martín Carlos. Universidad Nacional de la Plata. Facultad de Ciencias Médicas; ArgentinaFil: Furdui, Cristina. Wake Forest School of Medicine; Estados UnidosFil: Delbono, Osvaldo. Wake Forest School of Medicine; Estados Unido
Design and Rationale of the Fontan Udenafil Exercise Longitudinal (FUEL) Trial
The Fontan operation creates a circulation characterized by elevated central venous pressure and low cardiac output. Over time, these characteristics result in a predictable and persistent decline in exercise performance that is associated with an increase in morbidity and mortality. A medical therapy that targets the abnormalities of the Fontan circulation might, therefore, be associated with improved outcomes. Udenafil, a phosphodiesterase type 5 inhibitor, has undergone phase I/II testing in adolescents who have had the Fontan operation and has been shown to be safe and well tolerated in the short-term. However, there are no data regarding the long-term efficacy of udenafil in this population. The Fontan Udenafil Exercise Longitudinal (FUEL) Trial is a randomized, double blind, placebo controlled phase III clinical trial being conducted by the Pediatric Heart Network in collaboration with Mezzion Pharma Co., Ltd. This trial is designed to test the hypothesis that treatment with udenafil will lead to an improvement in exercise capacity in adolescents who have undergone the Fontan operation. A safety extension trial, the FUEL Open-Label Extension Trial (FUEL OLE), offers the opportunity for all FUEL subjects to obtain open-label udenafil for an additional 12 months following completion of FUEL, and evaluates the long-term safety and tolerability of this medication. This manuscript describes the rationale and study design for FUEL and FUEL OLE. Together, these trials provide an opportunity to better understand the role of medical management in the care of those who have undergone the Fontan operation
BDA-410 Treatment Reduces Body Weight and Fat Content by Enhancing Lipolysis in Sedentary Senescent Mice
Loss of muscle mass and force with age leads to fall risk, mobility impairment, and reduced quality of life. This article shows that BDA-410, a calpain inhibitor, induced loss of body weight and fat but not lean mass or skeletal muscle proteins in a cohort of sedentary 23-month-old mice. Food and water intake and locomotor activity were not modified, whereas BDA-410 treatment decreased intramyocellular lipid and perigonadal fat, increased serum nonesterified fatty acids, and upregulated the genes mediating lipolysis and oxidation, lean phenotype, muscle contraction, muscle transcription regulation, and oxidative stress response. This finding is consistent with our recent report that lipid accumulation in skeletal myofibers is significantly correlated with slower fiber-contraction kinetics and diminished power in obese older adult mice. A proteomic analysis and immunoblot showed downregulation of the phosphatase PPP1R12B, which increases phosphorylated myosin half-life and modulates the calcium sensitivity of the contractile apparatus. This study demonstrates that BDA-410 exerts a beneficial effect on skeletal muscle contractility through new, alternative mechanisms, including enhanced lipolysis, upregulation of "lean phenotype-related genes," downregulation of the PP1R12B phosphatase, and enhanced excitation- contraction coupling. This single compound holds promise for treating age-dependent decline in muscle composition and strength.Facultad de Ciencias MédicasInstituto de Investigaciones Bioquímicas de La PlataCentro de Investigaciones Inmunológicas Básicas y Aplicada
Efficacy and safety of two neutralising monoclonal antibody therapies, sotrovimab and BRII-196 plus BRII-198, for adults hospitalised with COVID-19 (TICO): a randomised controlled trial
BACKGROUND: We aimed to assess the efficacy and safety of two neutralising monoclonal antibody therapies (sotrovimab [Vir Biotechnology and GlaxoSmithKline] and BRII-196 plus BRII-198 [Brii Biosciences]) for adults admitted to hospital for COVID-19 (hereafter referred to as hospitalised) with COVID-19. METHODS: In this multinational, double-blind, randomised, placebo-controlled, clinical trial (Therapeutics for Inpatients with COVID-19 [TICO]), adults (aged ≥18 years) hospitalised with COVID-19 at 43 hospitals in the USA, Denmark, Switzerland, and Poland were recruited. Patients were eligible if they had laboratory-confirmed SARS-CoV-2 infection and COVID-19 symptoms for up to 12 days. Using a web-based application, participants were randomly assigned (2:1:2:1), stratified by trial site pharmacy, to sotrovimab 500 mg, matching placebo for sotrovimab, BRII-196 1000 mg plus BRII-198 1000 mg, or matching placebo for BRII-196 plus BRII-198, in addition to standard of care. Each study product was administered as a single dose given intravenously over 60 min. The concurrent placebo groups were pooled for analyses. The primary outcome was time to sustained clinical recovery, defined as discharge from the hospital to home and remaining at home for 14 consecutive days, up to day 90 after randomisation. Interim futility analyses were based on two seven-category ordinal outcome scales on day 5 that measured pulmonary status and extrapulmonary complications of COVID-19. The safety outcome was a composite of death, serious adverse events, incident organ failure, and serious coinfection up to day 90 after randomisation. Efficacy and safety outcomes were assessed in the modified intention-to-treat population, defined as all patients randomly assigned to treatment who started the study infusion. This study is registered with ClinicalTrials.gov, NCT04501978. FINDINGS: Between Dec 16, 2020, and March 1, 2021, 546 patients were enrolled and randomly assigned to sotrovimab (n=184), BRII-196 plus BRII-198 (n=183), or placebo (n=179), of whom 536 received part or all of their assigned study drug (sotrovimab n=182, BRII-196 plus BRII-198 n=176, or placebo n=178; median age of 60 years [IQR 50-72], 228 [43%] patients were female and 308 [57%] were male). At this point, enrolment was halted on the basis of the interim futility analysis. At day 5, neither the sotrovimab group nor the BRII-196 plus BRII-198 group had significantly higher odds of more favourable outcomes than the placebo group on either the pulmonary scale (adjusted odds ratio sotrovimab 1·07 [95% CI 0·74-1·56]; BRII-196 plus BRII-198 0·98 [95% CI 0·67-1·43]) or the pulmonary-plus complications scale (sotrovimab 1·08 [0·74-1·58]; BRII-196 plus BRII-198 1·00 [0·68-1·46]). By day 90, sustained clinical recovery was seen in 151 (85%) patients in the placebo group compared with 160 (88%) in the sotrovimab group (adjusted rate ratio 1·12 [95% CI 0·91-1·37]) and 155 (88%) in the BRII-196 plus BRII-198 group (1·08 [0·88-1·32]). The composite safety outcome up to day 90 was met by 48 (27%) patients in the placebo group, 42 (23%) in the sotrovimab group, and 45 (26%) in the BRII-196 plus BRII-198 group. 13 (7%) patients in the placebo group, 14 (8%) in the sotrovimab group, and 15 (9%) in the BRII-196 plus BRII-198 group died up to day 90. INTERPRETATION: Neither sotrovimab nor BRII-196 plus BRII-198 showed efficacy for improving clinical outcomes among adults hospitalised with COVID-19. FUNDING: US National Institutes of Health and Operation Warp Speed
Hydroxycarbamide in very young children with sickle-cell anaemia: a multicentre, randomised, controlled trial (BABY HUG)
Sickle-cell anaemia is associated with substantial morbidity from acute complications and organ dysfunction beginning in the first year of life. Hydroxycarbamide substantially reduces episodes of pain and acute chest syndrome, admissions to hospital, and transfusions in adults with sickle-cell anaemia. We assessed the effect of hydroxycarbamide therapy on organ dysfunction and clinical complications, and examined laboratory findings and toxic effects.
This randomised trial was undertaken in 13 centres in the USA between October, 2003, and September, 2009. Eligible participants had haemoglobin SS (HbSS) or haemoglobin Sβ
0thalassaemia, were aged 9–18 months at randomisation, and were not selected for clinical severity. Participants received liquid hydroxycarbamide, 20 mg/kg per day, or placebo for 2 years. Randomisation assignments were generated by the medical coordinating centre by a pre-decided schedule. Identical appearing and tasting formulations were used for hydroxycarbamide and placebo. Patients, caregivers, and coordinating centre staff were masked to treatment allocation. Primary study endpoints were splenic function (qualitative uptake on
99Tc spleen scan) and renal function (glomerular filtration rate by
99mTc-DTPA clearance). Additional assessments included blood counts, fetal haemoglobin concentration, chemistry profiles, spleen function biomarkers, urine osmolality, neurodevelopment, transcranial Doppler ultrasonography, growth, and mutagenicity. Study visits occurred every 2–4 weeks. Analysis was by intention to treat. The trial is registered with
ClinicalTrials.gov, number
NCT00006400.
96 patients received hydroxycarbamide and 97 placebo, of whom 83 patients in the hydroxycarbamide group and 84 in the placebo group completed the study. Significant differences were not seen between groups for the primary endpoints (19 of 70 patients with decreased spleen function at exit in the hydroxycarbamide group
vs 28 of 74 patients in the placebo group, p=0·21; and a difference in the mean increase in DTPA glomerular filtration rate in the hydroxycarbamide group versus the placebo group of 2 mL/min per 1·73 m
2, p=0·84). Hydroxycarbamide significantly decreased pain (177 events in 62 patients
vs 375 events in 75 patients in the placebo group, p=0·002) and dactylitis (24 events in 14 patients
vs 123 events in 42 patients in the placebo group, p<0·0001), with some evidence for decreased acute chest syndrome, hospitalisation rates, and transfusion. Hydroxyurea increased haemoglobin and fetal haemoglobin, and decreased white blood-cell count. Toxicity was limited to mild-to-moderate neutropenia.
On the basis of the safety and efficacy data from this trial, hydroxycarbamide can now be considered for all very young children with sickle-cell anaemia.
The US National Heart, Lung, and Blood Institute; and the National Institute of Child Health and Human Development