2,165 research outputs found
Promises and potential pitfalls of a ‘cognitive neuroscience of mathematics learning'
The present commentary discusses the papers of the special issue on ‘cognitive neuroscience and mathematics learning' with respect to methodological and theoretical constraints of using neuroscientific methods to study educationally relevant processes associated with mathematics learning. A special focus is laid on the relevance of subject populations, methodological limitations of current neuroimaging methods and theoretical questions concerning the relationship between the well-studied neural correlates of numerical magnitude processing and the less-investigated neural processes underlying higher level mathematical skills, such as algebraic reasonin
Targeting dendritic cells in pancreatic ductal adenocarcinoma
Dendritic cells (DC) are an integral part of the tumor microenvironment. Pancreatic cancer is characterized by reduced number and function of DCs, which impacts antigen presentation and contributes to immune tolerance. Recent data suggest that exosomes can mediate communication between pancreatic cancer cells and DCs. Furthermore, levels of DCs may serve as prognostic factors. There is also growing evidence for the effectiveness of vaccination with DCs pulsed with tumor antigens to initiate adaptive cytolytic immune responses via T cells. Most experience with DC-based vaccination has been gathered for MUC1 and WT1 antigens, where clinical studies in advanced pancreatic cancer have provided encouraging results. In this review, we highlight the role of DC in the course, prognosis and treatment of pancreatic cancer
Common and distinct brain regions in both parietal and frontal cortex support symbolic and nonsymbolic number processing in humans : a functional neuroimaging meta-analysis
A degenerate three-level laser with a parametric amplifier
The aim of this paper is to study the squeezing and statistical properties of
the light produced by a degenerate three-level laser whose cavity contains a
degenerate parametric amplifier. In this quantum optical system the top and
bottom levels of the three-level atoms injected into the laser cavity are
coupled by the pump mode emerging from the parametric amplifier. For a linear
gain coefficient of 100 and for a cavity damping constant of 0.8, the maximum
intracavity squeezing is found at steady state and at threshold to be 93%.Comment: 8 pages, 4 figures, published versio
Recommended from our members
Evaluation of polycyclic aromatic hydrocarbons using analytical methods, toxicology, and risk assessment research: seafood safety after a petroleum spill as an example.
BackgroundPolycyclic aromatic hydrocarbons (PAHs) are abundant and widespread environmental chemicals. They are produced naturally and through man-made processes, and they are common in organic media, including petroleum. Several PAHs are toxic, and a subset exhibit carcinogenic activity. PAHs represent a range of chemical structures based on two or more benzene rings and, depending on their source, can exhibit a variety of side modifications resulting from oxygenation, nitrogenation, and alkylation.ObjectivesHere we discuss the increasing ability of contemporary analytical methods to distinguish not only different chemical structures among PAHs but also their concentrations in environmental media. Using seafood contamination following the Deepwater Horizon accident as an example, we identify issues that are emerging in the PAH risk assessment process because of increasing analytical sensitivity for individual PAHs, and we describe the paucity of toxicological literature for many of these compounds.DiscussionPAHs, including the large variety of chemically modified or substituted PAHs, are naturally occurring and may constitute health risks if human populations are exposed to hazardous levels. However, toxicity evaluations have not kept pace with modern analytic methods and their increased ability to detect substituted PAHs. Therefore, although it is possible to measure these compounds in seafood and other media, we do not have sufficient information on the potential toxicity of these compounds to incorporate them into human health risk assessments and characterizations.ConclusionsFuture research efforts should strategically attempt to fill this toxicological knowledge gap so human health risk assessments of PAHs in environmental media or food can be better determined. This is especially important in the aftermath of petroleum spills
The development of metaphorical language comprehension in typical development and in Williams syndrome
The domain of figurative language comprehension was used to probe the developmental relation between language and cognition in typically developing individuals and individuals with Williams syndrome. Extending the work of Vosniadou and Ortony, the emergence of nonliteral similarity and category knowledge was investigated in 117 typically developing children between 4 and 12 years of age, 19 typically developing adults, 15 children with Williams syndrome between 5 and 12 years of age, and 8 adults with Williams syndrome. Participants were required to complete similarity and categorization statements by selecting one of two words (e.g., either “The sun is like ___” or “The sun is the same kind of thing as ___”) with word pairs formed from items that were literally, perceptually, or functionally similar to the target word or else anomalous (e.g., moon, orange, oven, or chair, respectively). Results indicated that individuals with Williams syndrome may access different, less abstract knowledge in figurative language comparisons despite the relatively strong verbal abilities found in this disorder
Исследование ультрадисперсных оксидов меди, полученных плазмодинамическим методом
The synthesis of copper oxides has a great importance due to the fact these materials are widely used in superconductors manufacturing. It’s known that properties of materials in nanodispersed conditions are improved. In this article, an analysis of ultradispersed plasmodynamic synthesis product obtained using coaxial magnetoplasma accelerator with copper electrodes was carried out. The obtained powder was analyzed by X-ray diffractometer Shimadzu XRD 7000 using the temperature consoles Anton Paar TTK450. Using this analysis such phases as copper Cu, copper oxide (I) Cu2O, copper oxide (II) CuO, and copper hydroxide hydrate Cu(OH)[2]•H[2]O were identified in the product. By gradually heating, the powder to the temperature of 800 °С the phase change was observed. The mass of copper oxide increased up to 96% and copper hydroxide hydrate
- …
