56 research outputs found

    A detailed study of anodization current in ion irradiated silicon

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    interaction of light with lead halide perovskites a review

    Get PDF
    Lead halide perovskites are the new rising generation of semiconductor materials due to theirunique optical and electrical properties. The investigation of the interaction of halide perovskites and light is a key issue not only for understanding theirphotophysicsbut also for practical applications. Hence, tremendous efforts have been devoted to this topic andbrunch into two:(i)decompositionof the halide perovskites thin films under light illumination and(ii)influence of light soaking on their photoluminescence (PL) properties. In this review, we for the first time thoroughly compare the illumination conditions and the sample environment to correlate the PL changes and decomposition of perovskite under light illumination. Inthe case of vacuum and dry nitrogen, PL of the halide perovskite ( PbI3–xClx, PbBr3–xClx, MAPbI3) thin films decreases due to the defects induced by light illumination, and under high excitations the thin film even decomposes. In thepresence of oxygen or moisture,light induces the PL enhancement of halide perovskite (MAPbI3) thin films at low light illumination, while increasing the excitationcauses the PL to quench and perovskite thin film to decompose. In the case of mixed halide perovskite (MAPb(BrxI1-x)3) light inducesreversible segregation of Br domains and I domains

    Role of acid-base equilibria in the size, shape, and phase control of cesium lead bromide nanocrystals

    Get PDF
    A binary ligand system composed of aliphatic carboxylic acids and primary amines of various chain lengths is commonly employed in diverse synthesis methods for CsPbBr3 nanocrystals (NCs). In this work, we have carried out a systematic study examining how the concentration of ligands (oleylamine and oleic acid) and the resulting acidity (or basicity) affects the hot injection synthesis of CsPbBr3 NCs. We devise a general synthesis scheme for cesium lead bromide NCs which allows control over size, size distribution, shape, and phase (CsPbBr3 or Cs4PbBr6) by combining key insights on the acid base interactions that rule this ligand system. Furthermore, our findings shed light upon the solubility of PbBr2 in this binary ligand system, and plausible mechanisms are suggested in order to understand the ligand-mediated phase control and structural stability of CsPbBr3 NCs

    fully solution processed conductive films based on colloidal copper selenide nanosheets for flexible electronics

    Get PDF
    A novel colloidal synthesis of copper selenide nanosheets (NSs) with lateral dimensions of up to 3 μm is developed. This material is used for the fabrication of flexible conductive films prepared via simple drop-casting of the NS dispersions without any additional treatment. The electrical performance of these coatings is benchmarked against copper selenide spherical nanocrystals (SNCs) in order to demonstrate the advantage of 2D morphology of the NSs for flexible electronics. In this contest, Cu2−xSe SNC films exhibit higher conductivity but lower reproducibility due to the formation of cracks leading to discontinuous films. Furthermore, the electrical properties of the films deposited on different flexible substrates following their bending, stretching and folding are studied. A comparison of Cu2−xSe SNC and CuSe NS films reveals an increased stability of the CuSe NS films under mechanical stress applied to the samples and their improved long-term stability in air

    CsPbX3/SiOx (X = Cl, Br, I) monoliths prepared via a novel sol-gel route starting from Cs4PbX6 nanocrystals

    Get PDF
    We developed a facile synthesis of nanocomposite powders of CsPbX3 nanocrystals (NCs) embedded in silica. The synthesis starts from colloidal Cs4PbX6 NCs that are mixed with tetraethyl orthosilicate in the presence of nitric acid, which triggers the sol-gel reaction yielding the formation of SiOx and the conversion of starting NCs into CsPbX3 ones. The overall reaction delivers CsPbX3 NCs encased in a silica matrix. The resulting CsPbX3/SiOx nano-composite powders exhibited enhanced moisture and thermal stability in air. Also, when mixing different CsPbX3/SiOx samples having diverse anion compositions, no interparticle anion exchange processes were observed, which is a further indication that the silica matrix acts as a robust barrier surrounding the NCs. Finallly, we used these composites as down-converter phosphors on top of a blue light-emitting diode (LED), delivering nearly ideal white light emission with the Commission Internationale de l'Eclairage (CIE) color coordinates (0.32, 0.33)

    Silicon-based photonic crystals fabricated using proton beam writing combined with electrochemical etching method

    Get PDF
    A method for fabrication of three-dimensional (3D) silicon nanostructures based on selective formation of porous silicon using ion beam irradiation of bulk p-type silicon followed by electrochemical etching is shown. It opens a route towards the fabrication of two-dimensional (2D) and 3D silicon-based photonic crystals with high flexibility and industrial compatibility. In this work, we present the fabrication of 2D photonic lattice and photonic slab structures and propose a process for the fabrication of 3D woodpile photonic crystals based on this approach. Simulated results of photonic band structures for the fabricated 2D photonic crystals show the presence of TE or TM gap in mid-infrared rang

    Synthesis of Air-Stable CdSe/ZnS Core–Shell Nanoplatelets with Tunable Emission Wavelength

    Get PDF
    In the past few years, several protocols have been reported on the synthesis of CdSe nanoplatelets with narrow photoluminescence (PL) spectrum, high PL quantum efficiency, and short exciton lifetime. The corresponding core/shell nanoplatelets are however still mostly based on CdSe/CdS, which possess an extended lifetime and a strong red shift of the band-edge absorption and emission, in accordance with a quasi-type-II band alignment. Here we report on a robust synthesis procedure to grow a ZnS shell around CdSe nanoplatelets at moderate temperatures of 100–150 °C, to improve the optical properties of CdSe nanoplatelets via a type-I core/shell heterostructure. The shell growth is performed under ambient atmosphere, in either toluene or 1,2-dichlorobenzene. The variation of the shell thickness induces a continuous red shift of the PL peak, eventually reaching 611 nm. The PL quantum efficiency is increased compared to the original CdSe cores, with values up to 60% depending on the shell thickness. High-resolution transmission electron microscopy reveals a bending of the nanoplatelets caused by strain due to 12% lattice mismatch between CdSe and ZnS. The present procedure can easily be translated to other core/shell nanocrystals, such as CdSe/CdS and CdSe/CdZnS nanoplatelets.The present publication is realized with the support of the Ministero degli Affari Esteri e della Cooperazione Internazionale (IONX-NC4SOL). This project has also received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 696656 (GrapheneCore1). J.L.M. acknowledges support from UJI project P1-1B2014-24 and MINECO project CTQ2014-60178-P

    In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals

    Get PDF
    An increasing number of studies have recently reported the rapid degradation of hybrid and all-inorganic lead halide perovskite nanocrystals under electron beam irradiation in the transmission electron microscope, with the formation of nanometer size, high contrast particles. The nature of these nanoparticles and the involved transformations in the perovskite nanocrystals are still a matter of debate. Herein, we have studied the effects of high energy (80/200 keV) electron irradiation on colloidal cesium lead bromide (CsPbBr3) nanocrystals with different shapes and sizes, especially 3 nm thick nanosheets, a morphology that facilitated the analysis of the various ongoing processes. Our results show that the CsPbBr3 nanocrystals undergo a radiolysis process, with electron stimulated desorption of a fraction of bromine atoms and the reduction of a fraction of Pb2+ ions to Pb0. Subsequently Pb0 atoms diffuse and aggregate, giving rise to the high contrast particles, as previously reported by various groups. The diffusion is facilitated by both high temperature and electron beam irradiation. The early stage Pb nanoparticles are epitaxially bound to the parent CsPbBr3 lattice, and evolve into nonepitaxially bound Pb crystals upon further irradiation, leading to local amorphization and consequent dismantling of the CsPbBr3 lattice. The comparison among CsPbBr3 nanocrystals with various shapes and sizes evidences that the damage is particularly pronounced at the corners and edges of the surface, due to a lower diffusion barrier for Pb0 on the surface than inside the crystal and the presence of a larger fraction of under-coordinated atoms

    Real-Time In Situ Observation of CsPbBr3 Perovskite Nanoplatelets Transforming into Nanosheets

    Get PDF
    The manipulation of nano-objects through heating is an effective strategy for inducing structural modifications and therefore changing the optoelectronic properties of semiconducting materials. Despite its potential, the underlying mechanism of the structural transformations remains elusive, largely due to the challenges associated with their in situ observations. To address these issues, we synthesize temperature-sensitive CsPbBr3 perovskite nanoplatelets and investigate their structural evolution at the nanoscale using in situ heating transmission electron microscopy. We observe the morphological changes that start from the self-assembly of the nanoplatelets into ribbons on a substrate. We identify several paths of merging nanoplates within ribbons that ultimately lead to the formation of nanosheets dispersed randomly on the substrate. These observations are supported by molecular dynamics simulations. We correlate the various paths for merging to the random orientation of the initial ribbons along with the ligand mobility (especially from the edges of the nanoplatelets). This leads to the preferential growth of individual nanosheets and the merging of neighboring ones. These processes enable the creation of structures with tunable emission, ranging from blue to green, all from a single material. Our real-time observations of the transformation of perovskite 2D nanocrystals reveal a route to achieve large-area nanosheets by controlling the initial orientation of the self-assembled objects with potential for large-scale applications
    corecore