17 research outputs found

    The Innovation Colours: Σχεδίαση και υλοποίηση διαδικτυακού παιχνιδιού με κάρτες

    Get PDF
    Η παρούσα εργασία αναλύει την διαδικασία σχεδίασης και υλοποίησης ενός διαδικτυακού παιχνιδιού με κάρτες που βοηθάει τους παίκτες να ανακαλύψουν στοιχεία του χαρακτήρα τους που θα συμβάλλουν στην ανάπτυξη ομαδικού πνεύματος και θα επιταχύνουν την υλοποίηση καινοτόμων ιδεών. Στόχος μας κατά την σχεδίαση του παιχνιδιού είναι να διεγείρουμε το ενδιαφέρον των χρηστών ώστε, μέσω της διαδραστικότητας, να αφομοιώσουν ευκολότερα τις πληροφορίες. Για να το επιτύχουμε αυτό επικεντρωνόμαστε στην διασφάλιση υψηλών επιπέδων ευχρηστίας χρησιμοποιώντας επαναληπτική σχεδίαση και διαμορφωτική αξιολόγηση. Επειδή το παιχνίδι θα χρησιμοποιείται κυρίως στον χώρο της διοίκησης επιχειρήσεων, υπάρχει η ανάγκη πρόσβασης από διαφορετικές πλατφόρμες και προσαρμόσαμε κατάλληλα την υλοποίηση. Η αξιολόγηση που έγινε με 10 χρήστες συνέβαλλε στη διαμόρφωση της τελικής μορφής του παιχνιδιού και στην εξαγωγή συμπερασμάτων για την εμπειρία χρήσης, η οποία ήταν σύμφωνη με τους στόχους μας.This thesis presents the process of designing and implementing a web-based card game that helps its users cooperate with people around them in a better way while being more productive. Our goal while designing the game is to stimulate the users’ interest and help them assimilate the information easily through interactivity. To accomplish this, we focus on ensuring high levels of usability through iterative design and formative evaluation. As the game will be mainly used in business management there is also the need of accessing it through different platforms, so the implementation was adjusted accordingly. Evaluating with 10 users contributed on forming the interface and on drawing conclusions about the user experience, which was meeting our targets

    Emerging Trends in Biogenic Amines Analysis

    Get PDF
    Biogenic amines are low-molecular-mass substances, essential for proper health for all organisms. These compounds could be detrimental to human health with various toxicological effects when they are present in high concentrations. Therefore, biogenic amines monitoring in food samples is a matter of utmost importance, and their accurate determination is considered indispensable. Under this context, we provide an overview over the most widely employed analytical techniques for biogenic amines determination such as chromatographic techniques and biosensors, emphasizing on new approaches. A critical comparison of the techniques is also given, presenting their advantages and drawbacks regarding important analytical characteristics such as sensitivity. Finally, we focus on foods in which biogenic amines mainly occur such as fish, meat and wine and other fermented products

    Detecting Forged Alcohol Non-invasively Through Vibrational Spectroscopy and Machine Learning

    Get PDF
    Alcoholic spirits are a common target for counterfeiting and adulteration, with potential costs to public health, the taxpayer and brand integrity. Current methods to authenticate spirits include examinations of superficial appearance and consistency, or require the tester to open the bottle and remove a sample. The former is inexact, while the latter is not suitable for widespread screening or for high-value spirits, which lose value once opened. We study whether non-invasive near infrared spectroscopy, in combination with traditional and time series classification methods, can correctly classify the alcohol content (a key factor in determining authenticity) of synthesised spirits sealed in real bottles. Such an experimental setup could allow for a portable, cheap to operate, and fast authentication device. We find that ethanol content can be classified with high accuracy, however methanol content proved difficult with the algorithms evaluated

    Blood and hair as non-invasive trace element biological indicators in growing rabbits

    Get PDF
    [EN] The suitability of blood and hair as non-invasive tools to monitor trace element contents was studied in 48 Hyla male growing rabbits. Three diets with increasing organic selenium (Se) addition (0.1, 0.5 and 2.5 mg/kg) were used to induce alterations in the concentrations of trace elements vs. an unsupplemented diet. In blood, a linear decrease in Co (P<0.001), Cu (P<0.001), Mn (P<0.05), Zn (P<0.05), Sb (P<0.001), As (P<0.001), Cr (P<0.001), Mo (P<0.001), Ni (P<0.001) and Cd (P<0.001) concentrations with increasing dietary Se was observed. In hair, a cubic effect of dietary Se on Co (P<0.01), Cu (P<0.05), Mn (P<0.001), Pb (P<0.05), Mo (P<0.05) and Cd (P<0.05) concentrations was found, while As, Cr and Ni concentrations decreased linearly (P<0.01, P<0.01 and P<0.001, respectively) with increasing dietary Se. Selenium was negatively correlated to Sb, As, Cr, Mo, Ni and Cd, (P<0.001) in blood, and to As (P<0.05), Cr, Ni (P<0.01) and Pb (P<0.05) in hair. The contents of Se, As, Cr and Ni in blood were highly correlated (P<0.001) to those in hair. Blood appeared to be more sensitive than hair in detecting small changes in the trace element profile in rabbits, as was indicated by the discriminant analysis. In conclusion, blood and hair can be suitable biological indicators of essential, toxic and potentially toxic trace element status in rabbits, particularly when used complementarily.The authors are grateful to NUEVO S.A. (N Artaki, Euboia, Greece) for providing Sel-Plex®. This research has not received any specific funding.Papadomichelakis, G.; Pappas, AC.; Zoidis, E.; Danezis, G.; Georgiou, KA.; Fegeros, K. (2019). Blood and hair as non-invasive trace element biological indicators in growing rabbits. World Rabbit Science. 27(1):21-30. https://doi.org/10.4995/wrs.2019.10654SWORD2130271Barbosa F.J., Tanus-Santos J.E., Gerlach R.F., Parsons P.J. 2005. A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environ. Health Persp., 113: 1669-1674. https://doi.org/10.1289/ehp.7917Bryan C.E., Christopher S.J., Balmer B.C., Wells R.S. 2007. Establishing baseline levels of trace elements in blood and skin of bottlenose dolphins in Sarasota Bay, Florida: implications for non-invasive monitoring. Sci. Total Environ., 388: 325-342. https://doi.org/10.1016/j.scitotenv.2007.07.046Čobanová K., Chrastinová Ľ., Chrenková M., Polačiková M., Formelová Z., Ivanišinová O., Ryzner M., Grešáková Ľ. 2018. The effect of different dietary zinc sources on mineral deposition and antioxidant indices inrabbit tissues World Rabbit Sci., 26: 241-248. https://doi.org/10.4995/wrs.2018.9206de Blas C., Mateos G.G. 2010. Feed formulation. In 'The Nutrition of the Rabbit (2nd ed.)'. C de Blas, J. Wiseman (Eds.) 222-231. CAB International: Wallingford, UK. https://doi.org/10.1079/9781845936693.0222De Temmerman L., Vanongeval L., Boon W., Hoenig M., Geypens M. 2003. Heavy metal content of arable soils in northern Belgium. Water Air Soil Poll., 148: 61-76. https://doi.org/10.1023/A:1025498629671FEDNA (2003). Fundación Española para el Desarrollo de la Nutrición Animal. In C. De Blas, G. G. Mateos, & P. G. Rebollar (Eds.), Tablas FEDNA de composición y valor nutritivo de alimentos para la fabricación de piensos (2nd ed.). Madrid, Spain: FEDNA.Georgiou C.A., Koupparis M.A. 1990. Automated flow injection spectrophotometric determination of para- and metasubstituted phenols of pharmaceutical interest based on their oxidative condensation with 1-nitroso-2-naphthol. Analyst, 115: 309-313. https://doi.org/10.1039/an9901500309Georgiou C.A., Danezis G.P. 2015. Elemental and isotopic mass spectrometry. In 'Advanced Mass Spectrometry for Food, Comprehensive Analytical Chemistry'. (Ed. Y Pico) 131-243. Elsevier: Amsterdam. https://doi.org/10.1016/B978-0-444-63340-8.00003-0Glynn A.W., Ilback N.G., Brabencova D., Carlsson L., Enqvist E.C., Netzel E., Oskarsson A. 1993. Influence of sodium selenite on 203Hg absorption, distribution and elimination in male mice exposed to methyl 203Hg. Biol. Trace Elem. Res., 39: 91-107. https://doi.org/10.1007/BF02783813Gulson B.L., Mizon K.J., Korsch M.J., Howarth D., Phillips A., Hall J. 1996. Impact on blood lead in children and adults following relocation from their source of exposure and contribution of skeletal tissue to blood lead. B. Environ. Contam. Tox., 56: 543-550. https://doi.org/10.1007/s001289900078Hasan M.Y., Kosanovic M., Fahim M.A., Adem A., Petroianu G. 2004. Trace metal profiles in hair samples from children in urban and rural region of the United Arab Emirates. Vet. Hum. Toxicol., 46: 119-121.He K. 2011. Trace elements in nails as biomarkers in clinical research. Eur. J. Clin. Invest., 41: 98-102.https://doi.org/10.1111/j.1365-2362.2010.02373.xKäkelä R., Käkelä A., Hyvärinen H. 1999. Effects of nickel chloride on reproduction of the rat and possible antagonistic role of selenium. Comp. Biochem. Physiol. C, 123: 27-37.https://doi.org/10.1016/S0742-8413(99)00006-7Kan C.A., Meijer G.A.L. 2007. The risk of contamination of food with toxic substances present in animal feed. Anim. Feed Sci. Technol., 133: 84-108. https://doi.org/10.1016/j.anifeedsci.2006.08.005Keil D.E., Berger-Ritchie J., McMillin G.A. 2011. Testing for toxic elements: a focus on arsenic, cadmium, lead, and mercury. Labmedicine, 42: 735-742. https://doi.org/10.1309/LMYKGU05BEPE7IAWKlotz L.O., Kröncke K.D., Buchczyk D.P., Sies H. 2003. Role of copper, zinc, selenium and tellurium in the cellular defense against oxidative and nitrosative stress. J. Nutr., 133: 1448-1451. https://doi.org/10.1093/jn/133.5.1448SLevander O.A. 1977. Metabolic interrelationships between arsenic and selenium. Environ. Health Persp., 19: 159-164. https://doi.org/10.1289/ehp.7719159López-Alonso M.L., Benedito J.L., Miranda M., Castillo C., Hernández J., Shore R.F. 2002. Cattle as biomonitors of soil arsenic, copper and zinc concentrations in Galicia (NW Spain). Arch. Environ. Contam. Toxicol., 43: 103-108. https://doi.org/10.1007/s00244-002-1168-5McDowell L.R. 2003. 'Minerals in animal and human nutrition (2nd ed)'. (Elsevier Science: Amsterdam).Milošković A., Simić V. 2015. Arsenic and other trace elements in five edible fish species in relation to fish size and weight and potential health risks for human consumption. Pol. J. Environ. Stud., 24: 199-206. https://doi.org/10.15244/pjoes/24929Miranda M., López-Alonso M., Castillo C., Hernández J., Benedito J.L. 2005. Effects of moderate pollution on toxic and trace metal levels in calves from a polluted area of northern Spain. Environ. Int., 31: 543-548.https://doi.org/10.1016/j.envint.2004.09.025Ohta H., Seki Y., Yoshikawa H. 1995. Interactive effects of selenium on chronic cadmium toxicity in rats. ACES Bulletin, 8: 97-104. Othman A.I., El Missiry M.A. 1998. Role of selenium against lead toxicity in male rats. J. Biochem. Mol. Toxic., 12: 345-349. https://doi.org/10.1002/(SICI)1099-0461(1998)12:6%3C345::AID-JBT4%3E3.0.CO;2-VPapadomichelakis G., Zoidis E., Pappas A.C., Mountzouris K.C., Fegeros K. 2017. Effects of increasing dietary organic selenium levels on meat fatty acid composition and oxidative stability in growing rabbits. Meat Sci., 131: 132-138. https://doi.org/10.1016/j.meatsci.2017.05.006Papadomichelakis G., Zoidis E., Pappas A.C., Danezis G., Georgiou C.A., Fegeros K. 2018. Dietary organic selenium addition and accumulation of toxic and essential trace elements in liver and meat of growing rabbits. Meat Sci., 145: 383-388. https://doi.org/10.1016/j.meatsci.2018.07.022Pappas A.C., Zoidis E., Georgiou C.A., Demiris N., Surai P.F., Fegeros K. 2011. Influence of organic selenium supplementation on the accumulation of toxic and essential trace elements involved in the antioxidant systemof chicken. Food Addit. Contam. Part A, 28: 446-454. https://doi.org/10.1080/19440049.2010.549152Park D.U., Kim D.S., Yu S.D., Lee K.M., Ryu S.H., Kim S.G. et al. 2014. Blood levels of cadmium and lead in residents near abandoned metal mine areas in Korea. Environ. Monit. Assess., 186: 5209-5220. https://doi.org/10.1007/s10661-014-3770-1Patra R.C., Swarup D., Naresh R., Kumar P., Nandi D., Shekhar P., Roy S., Ali S.L. 2007. Tail hair as an indicator of environmental exposure of cows to lead and cadmium in different industrial areas. Ecotoxicol. Environ. Saf., 66: 127-131. https://doi.org/10.1016/j.ecoenv.2006.01.005Paukert J., Obrusnik I. 1986. The hair of the common hare (Lepus europaeus Pall.) and of the common vole (Microtus arvalis Pall.) as indicator of the environmental pollution. J. Hyg. Epidem. Microb. Imm., 30: 27-32.Paulsson K., Lundbergh K. 1989. The selenium method for treatment of lakes for elevated levels of mercury in fish. Sci. Total Environ., 87-88: 495-507. https://doi.org/10.1016/0048-9697(89)90256-8Perrone L., Moro R., Caroli M., Universit S., Fisiche S., Federico N. 1996. Trace elements in hair of healthy children sampled by age and sex. Biol. Trace Elem. Res., 51: 71-76. https://doi.org/10.1007/BF02790149Raab A., Hansen H.R., Zhuang L.Y., Feldmenn J. 2002. Arsenic accumulation and speciation analysis in wool from sheep exposed to arsenosugars. Talanta, 58: 167-176.https://doi.org/10.1016/S0039-9140(02)00257-6Reis L.S.L.S., Pardo P.E., Camargo A., Oba E. 2010. Mineral element and heavy metal poisoning in animals. Int. J. Med. Med. Sci., 1: 560-579.Rogowska K.A., Monkiewicz J., Grosicki A. 2009. Lead, cadmium, arsenic, copper, and zinc contents in the hair of cattle living in the area contaminated by a copper smelter in 2006-2008. B. Vet. I. Pulawy, 53: 703-706.Samanta G., Sharma R., Roychowdhury T., Chakraborti D. 2004. Arsenic and other elements in hair, nails, and skinscales of arsenic victims in West Bengal, India. Sci. Total Environ., 326: 33-47. https://doi.org/10.1016/j.scitotenv.2003.12.006Sanna E., Liguori A., Palmas L., Sor M.R., Floris G. 2003. Blood and hair lead levels in boys and girls living in two Sardinian towns at different risks of lead pollution. Ecotoxicol. Environ. Saf., 55: 293-299. https://doi.org/10.1016/S0147-6513(02)00072-6Sarmani S. 1987. A study of trace elements concentrations in human hair of some local population in Malaysia. J. Radioanal. Nucl. Chem., 110: 627-632. https://doi.org/10.1007/BF02035551Shanker K., Mishra S., Srivastava S., Srivastava R., Dass S., Prakash S., Srivastava M.M. 1996. Study of mercuryselenium (Hg-Se) interactions and their impact on Hg uptake by the radish (Raphanus sativus) plant. Food Chem. Toxic., 34: 883-886.https://doi.org/10.1016/S0278-6915(96)00047-6Shen S., Li X.F., Cullen W.R., Weinfeld M., Le X.C. 2013. Arsenic binding to proteins. Chem. Rev., 113: 7769-7792. https://doi.org/10.1021/cr300015cSoudani N., Amara I.B., Sefi M., Boudawara T., Zeghal N. 2011. Effects of selenium on chromium (VI)-induced hepatotoxicity in adult rats. Exp. Toxicol. Pathol., 63: 541-548. https://doi.org/10.1016/j.etp.2010.04.005Templeton G.F. 2011. A two-step approach for transforming continuous variables to normal: implications and recommendations for IS research. Commun. Assoc. Inf. Syst., 28: 41-58. https://doi.org/10.17705/1CAIS.02804Underwood E.J., Suttle N.F. 1999. 'The mineral nutrition of livestock (3rd ed.)'. CAB International: Wallingford, UK. 343-373. https://doi.org/10.1079/9780851991283.0000Valko M., Morris H., Cronin M.T.D. 2005. Metals, toxicity and oxidative stress. Curr. Med. Chem., 12: 1161-1208. https://doi.org/10.2174/0929867053764635Waegeneers N., Pizzolon J.C., Hoenig M., De Temmerman L. 2009. Accumulation of trace elements in cattle from rural and industrial areas in Belgium. Food Addit. Contam. A, 26: 326-332. https://doi.org/10.1080/02652030802429096Wangher P.D. 2001. Selenium and the brain: a review. Nutr. Neurosci., 4: 81-97. https://doi.org/10.1080/1028415X.2001.11747353Xing R., Li Y., Zhang B., Li H., Liao X. 2017. Indicative and complementary effects of human biological indicators for heavy metal exposure assessment. Environ. Geochem. Hlth., 39: 1031-1043. https://doi.org/10.1007/s10653-016-9870-9Zoidis E., Pappas A.C., Georgiou C.A., Komaitis Ε., Feggeros K. 2010. Selenium affects the expression of GPx4 and catalase in the liver of chicken. Comp. Biochem. Physiol. B, 155: 294-300. https://doi.org/10.1016/j.cbpb.2009.11.017Żukowska J., Biziuk M. 2008. Methodological evaluation of method for dietary heavy metal intake. J. Food Sci., 73: 21-29. https://doi.org/10.1111/j.1750-3841.2007.00648.

    Elemental Content in Pleurotus ostreatus and Cyclocybe cylindracea Mushrooms: Correlations with Concentrations in Cultivation Substrates and Effects on the Production Process

    No full text
    Few data exist about the effect of substrates’ elemental content on the respective concentrations in cultivated mushrooms, on the degradation of lignocellulosics or on production parameters. Sixteen elements (14 metals and 2 metalloids) were measured by inductively coupled plasma mass spectrometry (ICP-MS) in Pleurotus ostreatus and Cyclocybe cylindracea mushrooms, and in their seven cultivation substrates composed of various plant-based residues. Results revealed a high variability in elemental concentration among substrates which generally led to significant differences in the respective mushroom contents. High bioconcentration factors (BCFs) were noted for Cd, Cu, Mg and Zn for both species in all substrates. BCF of each element was variously affected by substrates’ pH, crude composition, and P and K content. Significant positive correlations were demonstrated for Cu, Fe, Mn and Li concentrations vs. a decrease of cellulose and hemicellulose in P. ostreatus substrates, and vs. mushrooms’ biological efficiency. In the case of C. cylindracea, Be, Mg and Mn concentrations were positively correlated with the decrease of hemicellulose in substrates, while a significant positive correlation was also recorded vs. mushroom productivity. Finally, it was found that 15% to 35% of the daily dietary needs in Mg, Se and Zn could be covered by mushroom consumption

    Food authentication: analytical methods for rare earth elements to determine geographical origin

    No full text
    The aim of this thesis was to investigate the use of rare earth elements fingerprints as authenticity indicators. Food authentication is a rapidly growing field mostly due to public awareness concerning food quality and safety. Of special concern is the declaration of specific quality attributes in high-value products. Therefore, there is a need for new analytical methodologies to specifically and unequivocally assess authentication and high-value products. Thus, analytical chemists, based on their knowledge on techniques and methodologies, are leading the research on food authentication.The theoretical part provides a scientometric evaluation of the field, highlighting the research trends and giving insight on emerging approaches of this evolving field. Explanation on why rare earths elemental fingerprint is useful for authentication of geographical origin, production method and cultivation practice is also provided. The experimental part is divided in three major components: Game meat authentication (wild rabbit’s discrimination from commercial and backyard rabbits), PDO “Tomataki Santorinis” authentication (discrimination from other cherry tomatoes) and Greek PDO and traditional cheeses authentication (fraud discrimination) through elemental fingerprints. Concerning game meat authentication, the sample discrimination was performed using multi-dimensional signatures where samples are described as high-dimensional vectors. We utilized Euclidian and angular distances between individual samples and signatures to determine sample groups and subgroups. Rare earth elements discriminate 100% wild from non wild rabbits. In addition, the rare earth elements distribution on rabbit’s tissues (muscle, liver, blood and hair) was assessed and it was found that REEs were accumulated greatly in hair, while muscle and liver of wild rabbits presented higher REEs concentrations than backyard and commercial rabbits. PDO “Tomataki Santorinis” was correctly classified (96%) against non-Santorini samples using only 12 elements (6 of which were REEs) through discriminant analysis. Respectively, using the total elemental profile, 99% of samples was classified correctly. It was also possible to discriminate organic from conventionally grown cherry tomatoes with 98% correct classification. Regarding, Greek PDO and traditional cheeses authentication, the results were also promising after correct classification of more than 97% of the samples in most comparisons, utilizing total elemental fingerprints. Elemental profiles were obtained though inductively coupled plasma mass spectrometry (ICP-MS). The implemented multi-element methods were validated according to EU regulations. Linearity, accuracy, precision, uncertainty along with the limits of detection and quantification were estimated, for each analyte per studied substrate.According to the best of our knowledge this is the first effort that reports meat and cheeses authentication through rare earth element signatures. In addition, this is the first attempt of investigating game meat authenticity according to its elemental fingerprint. Robust and reliable authentication databases for PDO “Tomataki Santorinis”, Greek PDO and traditional cheeses were created, utilizing rare earth elements fingerprint. With the developed methodology, several food products can be evaluated to verify labeling compliance and the existence of fraudulent practices.Στόχος της παρούσας διατριβής ήταν να μελετηθεί η χρήση αποτυπωμάτων των σπανίων γαιών ως δείκτες αυθεντικότητας. Η αυθεντικότητα των τροφίμων είναι ένα ραγδαίως ανερχόμενο πεδίο, κυρίως λόγω της ανησυχίας και ευαισθητοποίησης των καταναλωτών σχετικά με την ποιότητα και ασφάλεια των τροφίμων. Ιδιαίτερης σημασίας είναι η δήλωση συγκεκριμένων χαρακτηριστικών ποιότητας σε προϊόντα υψηλής αξίας. Ως εκ τούτου, υπάρχει ανάγκη για νέες μεθοδολογίες ανάλυσης σε προϊόντα προστιθέμενης αξίας. Έτσι, οι αναλυτικοί χημικοί, με βάση τις γνώσεις τους σχετικά με τις τεχνικές και μεθοδολογίες, οδηγούν την έρευνα της αυθεντικότητας των τροφίμων.Στο θεωρητικό μέρος παρουσιάζονται οι ερευνητικές τάσεις του τομέα, υπογραμμίζοντας τις προοπτικές των αναλυτικών τεχνικών στο τομέα μαζί με τις συνηθέστερες εφαρμογές που έχει η κάθε μία στο πεδίο. Ακόμη, δίνεται αναλυτική εξήγηση στο γιατί τα στοιχειακά αποτυπώματα, και ιδιαίτερα οι σπάνιες γαίες, αποτελούν αξιόπιστους δείκτες αυθεντικότητας, ειδικά μάλιστα για τον προσδιορισμό της γεωγραφικής προέλευσης.Το πειραματικό μέρος χωρίζεται σε τρία κύρια συστατικά: Αυθεντικότητα κρέατος κυνηγιού (διάκριση των αγριοκούνελων από οικόσιτα και εμπορικά), αυθεντικότητα για το ΠΟΠ «Τοματάκι Σαντορίνης» (διαφοροποίηση από άλλα μικρά τοματάκια) και αυθεντικότητα Ελληνικών ΠΟΠ και παραδοσιακών τυριών (διάκριση απομιμήσεων), μέσω στοιχειακών αποτυπωμάτων. Τα στοιχειακά προφίλ ελήφθησαν με τη χρήση της τεχνικής φασματομετρίας μαζών - επαγωγικά συζευγμένου πλάσματος (ICP-MS). Οι πολύ-στοιχειακές μέθοδοι που εφαρμόστηκαν επικυρώθηκαν σύμφωνα με τους Κανονισμούς της Ε.Ε. Έγινε εκτίμηση της γραμμικότητας της ακρίβειας, της πιστότητας και της αβεβαιότητας καθώς και προσδιορισμός των ορίων ανίχνευσης και ποσοτικοποίησης για κάθε αναλύτη σε κάθε υπόστρωμα.Όσον αφορά την αυθεντικότητα κρέατος κυνηγιού, η διάκριση των δειγμάτων πραγματοποιήθηκε χρησιμοποιώντας πολυδιάστατα στοιχειακά αποτυπώματα. Αξιοποιήθηκαν οι Ευκλείδειες και γωνιακές αποστάσεις μεταξύ των επιμέρους δειγμάτων ώστε να καθοριστούν οι ομάδες και υποομάδες των δειγμάτων. Οι σπάνιες γαίες ταξινόμησαν κατά 100% σωστά τα δείγματα μεταξύ των κατηγοριών άγρια με μη άγρια. Επιπροσθέτως, αξιολογήθηκε η κατανομή των σπανίων γαιών σε διάφορους ιστούς κουνελιών (μυς, ήπαρ, τρίχες, αίμα). Oι σπάνιες γαίες συσσωρεύονται κυρίως στις τρίχες, ενώ οι μύες και το ήπαρ των αγριοκούνελων παρουσίασαν μεγαλύτερες συγκεντρώσεις σπανίων γαιών από ότι αντίστοιχα τα οικόσιτα και εμπορικά κουνέλια. Αυτό πιθανότατα οφείλεται στην διατροφή τους. Τα δείγματα ΠΟΠ «Τοματάκι Σαντορίνης» ταξινομήθηκαν σωστά κατά 96% σε σχέση με τα δείγματα μη Σαντορίνης χρησιμοποιώντας μόνο 12 στοιχεία (6 εκ των οποίων σπάνιες γαίες) μέσω διακριτικής ανάλυσης. Αντίστοιχα, χρησιμοποιώντας το συνολικό στοιχειακό προφίλ, το 99% των δειγμάτων κατηγοριοποιήθηκε σωστά. Σχετικά με την αυθεντικότητα Ελληνικών ΠΟΠ και παραδοσιακών τυριών τα αποτελέσματα ήταν αρκετά ενθαρρυντικά, αφού τα ποσοστά ορθής ταξινόμησης των δειγμάτων ήταν πάνω από 97% για τις περισσότερες συγκρίσεις, αξιοποιώντας το συνολικό στοιχειακό αποτύπωμα. Σύμφωνα με τη γνωστή σε εμάς βιβλιογραφία, αυτή είναι η πρώτη προσπάθεια όπου αναφέρεται η επιβεβαίωση της αυθεντικότητας κρέατος και τυριών μέσω των στοιχειακών αποτυπωμάτων. Επιπλέον, αυτή είναι η πρώτη προσπάθεια αξιολόγησης της αυθεντικότητας κρέατος κυνηγιού μέσω στοιχειακών αποτυπωμάτων. Επιπλέον, δημιουργήθηκαν αξιόπιστες βάσεις δεδομένων για το ΠΟΠ «Τοματάκι Σαντορίνης», τα Ελληνικά ΠΟΠ και παραδοσιακά τυριά, αξιοποιώντας το προφίλ των σπανίων γαιών. Με την αναπτυχθείσα μεθοδολογία, πολλά προϊόντα διατροφής μπορούν να αξιολογηθούν για την επαλήθευση της συμμόρφωσής τους με τις επισημάνσεις ποιότητας και προέλευσης αλλά και για την ανίχνευση πιθανών δόλιων πρακτικών όπως η νοθεία

    Food authentication: state of the art and prospects

    No full text
    Food authentication is analytical process that validates label information about the food origin and production process. This review discusses emerging food authenticity indicators including rare earth elements, metabolic profiles, sensory profile evaluation, and microbial fingerprinting. A scientometric evaluation that highlights research trends and emerging approaches of this evolving field is presented. We analyzed and provided an insight into most commonly studied food types and drinks and highlighted the most promising authenticity markers for each major group. Finally, we discussed the data explosion that is emerging and discussed the developing trends in the field. The future of food authentication lies in Big Data since we are already collecting and analyzing huge amounts of data that converge from multiple sources. Big Data Analytics will include standardization of experiments, study design workflows, and of data reporting. Emerging data analytical tools will include integration of geographic information systems with climate information systems and metabolomics databases for precise spatio-temporal identification of food origin

    Greek Graviera Cheese Assessment through Elemental Metabolomics—Implications for Authentication, Safety and Nutrition

    No full text
    This study presents the comprehensive elemental profile of Greek Graviera (Gruy&egrave;re) cheeses. In total, 105 samples from nine different geographic regions produced from sheep, goat and cow milk and their mixtures were assessed. Elemental signatures of 61 elements were investigated for determination of geographic origin and milk type. Regional and milk type classification through Linear Discriminant Analysis was successful for almost all cases, while a less optimistic cross validation exercise presented lower classification rates. That points to further research using a much larger sample set, increasing confidence for cheese authentication utilizing also bioinformatics tools under development. This is the first study reporting signatures of 61 elements in dairy products including all sixteen rare earth elements and all seven precious metals. Safety and quality were assessed regarding toxic and nutritive elements. According to both EU and USA regulations and directives, Graviera is a nutritional source for trace and macro elements with low levels of toxic elements
    corecore