
Detecting forged alcohol non-invasively through
vibrational spectroscopy and machine learning

James Large1, E. Kate Kemsley2, Nikolaus Wellner2, Ian Goodall3, and
Anthony Bagnall1(�)

1 School of Computing Sciences, University of East Anglia, UK
{james.large, anthony.bagnall}@uea.ac.uk

2 Quadram Institute, Norwich Research Park, UK
{kate.kemsley, nikolaus.wellner}@quadram.ac.uk

3 Scotch Whisky Research Institute, Research Avenue North, Edinburgh, UK
ian.goodall@swri.co.uk

Abstract. Alcoholic spirits are a common target for counterfeiting and
adulteration, with potential costs to public health, the taxpayer and
brand integrity. Current methods to authenticate spirits include exami-
nations of superficial appearance and consistency, or require the tester
to open the bottle and remove a sample. The former is inexact, while
the latter is not suitable for widespread screening or for high-value spir-
its, which lose value once opened. We study whether non-invasive near
infrared spectroscopy, in combination with traditional and time series
classification methods, can correctly classify the alcohol content (a key
factor in determining authenticity) of synthesised spirits sealed in real
bottles. Such an experimental setup could allow for a portable, cheap
to operate, and fast authentication device. We find that ethanol content
can be classified with high accuracy, however methanol content proved
difficult with the algorithms evaluated.
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1 Introduction

Up to 25% of licensed premises in some parts of the UK have been found to
have counterfeit alcohol for sale4. Brown-Forman, the company that makes Jack
Daniels, estimates that around 30% of all alcohol in China is fake5.

Counterfeit alcohol poses a health risk to the consumer, as illegally produced
spirits may contain harmful contaminants such as methanol, an economic risk
due to the avoidance of taxes, and a risk to brand integrity in cases where the
fakes are being sold as named brands.

Forgeries can sometimes be detected through external appearance such as
inconsistent labelling or bottling, but currently there is no way to conclusively tell

4 http://www.bbc.co.uk/news/uk-12456360
5 https://www.theguardian.com/sustainable-business/2015/sep/16/china-fake-

alcohol-industry-counterfeit-bathtub-booze-whisky
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whether spirits are forged without opening the bottle to analyse a sample directly.
Breaking the seal and taking samples from a bottle is effectively a destructive
process, because even if authenticity is confirmed the bottle cannot later be sold
on store shelves or at auction, and collectors’ whisky will be greatly devalued.
Also, testing of samples can be an expensive and time consuming process that is
not suitable for mass screening. No matter what process is used it will require
one or more of: transport of the sample to a centralised lab; expert knowledge
and handling; consumable materials used in the analysis; and time for methods
such as chromatography. It is therefore desirable to develop a system that can
non-invasively determine authenticity of a suspect bottle in a cheap, portable,
simple and fast manner.

Vibrational spectroscopy in combination with modern machine learning tech-
niques provides a promising potential solution to these problems. Ever improving
computing power, spectroscopy equipment and algorithms mean that on-site
classification using cost effective equipment is becoming evermore feasible.

The alcohol concentration of genuine spirits in the UK is tightly controlled.
For example, Scotch whisky must contain the level stated on the bottle to within
0.3% (v/v). Forgeries typically do not have this level of quality control, with the
alcohol content often being lower than reported. Alternatively, methanol and
many higher alcohols and heavy metals have regulations prohibiting their presence
in spirits to within certain maximal concentrations to ensure safe consumption,
and are also tightly controlled. Both ethanol level and methanol level can in
principle be characterised by vibrational spectroscopy, and ultimately determined
with chemometric and machine learning techniques.

We wish to evaluate to what extent non-invasive determination of alcohol
concentrations in arbitrary sealed bottles using vibrational spectroscopy is possible
and worth pursuing. We describe experiments carried out on synthesised alcohol-
water solutions, analysed through-bottle using near infrared spectroscopy (NIRS),
and classified using a set of benchmark machine learning algorithms into ‘genuine’
and ‘forged’ categories based on their ethanol and methanol concentrations.

First, related work is reviewed in Section 2, and an overview of the data
collection process and a high-level analysis of it is given in Section 3. The
experimental and evaluation methods used are outlined in Section 4 and results
presented in 5, before conclusions are drawn in Section 6.

2 Background

2.1 Spectroscopy

Vibrational spectroscopy (VS) is the term used to describe two complementary
analytical techniques, infrared spectroscopy (IRS) and Raman spectroscopy (RS).
These are non-destructive, non-invasive tools that provide information about
the molecular composition of a sample by measuring the intensities of different
vibrational interactions between a light source and sample. The spectra produced
by VS acts like a fingerprint for the contents, and can be used qualitatively and
quantitatively for identification, characterisation, and quality control.



VS methods, along with many competing techniques, are much researched
within the food and drink sector [4, 9] due to VS’s non-invasive and relatively
low operating-cost nature as an analytical technique. However, VS suffers from
lower discriminatory power when compared with more time consuming and
destructive techniques such as gas or liquid chromatography, one of which is
often the technique used to determine the ground truth of studied samples.

As early as 2005, [10] carried out a comparison of NIR and Raman spec-
trometries for their suitability in combination with regression techniques for the
determination of alcohol content in whisky and vodka contained within clear and
coloured glass bottles. The study was conducted to evaluate the techniques for
possible use in non-invasive, in-situ quality assurance in bottling plants.

Univariate regression models for each type of drink were calibrated for the
Raman data in the first derivative spectrum, while a multivariate Partial Least
Squares (PLS) model was calibrated for the NIR data. The latter calibration
procedure involved some optimisations on the test data, and therefore the results
specifically should be treated with caution. However, the higher level conclusions
in terms of the relative difficulty of different aspects of the experiments are still
insightful: that differences between bottles accounted for the greatest variation
and difficulty in the analysis, relative to differences in bottle positioning and
time of measurement. The authors concluded that both NIR and Raman were
not suited to the analysis of samples within coloured glass in particular, due to
the effect of large amounts of fluorescence on the spectra. They also found that
for the doubly-transmitted NIR method, a signal could not be collected from
the widest part (70mm path length) of the largest bottles, whereas comparable
signals to that of the smallest bottles could be found by measuring through the
neck of the bottle (40mm path length).

More recent work in this area is described in [7]. The ability for Raman spec-
troscopy to analyse and discriminate between certain Scotch whisky production
factors from within their original containers is tested. 44 whisky samples, three
of which had samples transferred to glass vials due to their original bottles being
made of green glass, were measured directly through the glass walls using an
Avantes Raman instrument. Although not detailed in full, the authors note that
the location of measurement (from the neck, base or centre) had no influence on
the quality of the readings. Furthermore, the stability of the sampling suggested
excellent reproducibility, with normalised spectra being ‘virtually identical’.

In an initial Principal Component Analysis (PCA) visualisation, separation
could already be found between the type of cask each whisky was matured
in. However, factors such as the source distillery and use of artificial caramel
colourings could not be defined by the first three principal components (PC).

PLS Regression (PLSR) and Principal Component Regression (PCR) were
subsequently evaluated. However PLSR reportedly delivered far better results
and was therefore the only method discussed. Leave-one-out cross validation was
used as an evaluation procedure. A quantitative analysis of important factors
related to authentication was described: age; ethanol concentration; and a second
attempt at the presence of artificial colourings. Age could be estimated within



0.42 years (root mean squared error (RMSE)), from the samples in the range
3-22 years. On average ethanol concentration could be estimated to within 0.44%
(RMSE), which is only just outside the regulatory limits of Scotch Whisky (0.3%).
These are very strong results, suggesting not only feasibility but even an existing
ability to quantitatively determine key factors to whisky authentication. Ethanol
level determination is perhaps less surprising, as it does form 40-55.8% by vol
of the samples, but determining unintuitive properties like age within such an
accuracy is a positive result.

Continuing on from these works, our own investigation into this problem
focuses on portability, simplicity, and speed in all aspects of the analysis of a
sample. The final aim is to allow a non-expert to determine the authenticity of
an arbitrary spirit on-site and within seconds.

2.2 Classification

Classically, machine learning and chemometric methods handling spectral data
have been linear regressive models built on top of (automatically or manually)
selected attributes or PCA-transformed spaces. The physical interactions giving
rise to the spectra are understood to be linear in nature, and the resonances of
molecules being looked for are known to occur at certain wavelengths, even if the
particular wavelengths are not known a priori. Given this, more complex systems
may not have much room to increase predictive accuracy, be prone to overfitting,
and in some cases may lose interpretability of results. Linear systems on reduced
attribute spaces work satisfactorily for clean spectra collected under professional
and standardised conditions. However, they may be unable to handle structural
changes in the data.

The nature of the problem suggests a regression model. However, through
consultation with industry, the ultimate use case designed to aid field use is
a traffic light classification scheme; green (genuine), yellow (suspect), and red
(forged). The confidence thresholds for each class can be set by the user in
response to factors such as the costs of verification and screening.

The classification of spectra can be phrased as a time series classification
(TSC) problem [1]. A time series is a set of (typically numerous) ordered and
numeric attributes. While different sets of TSC data will have different underlying
properties, the typical higher-order structures informing classification are the
shapes and patterns of series and/or subseries.

Recent large scale evaluations on entire dataset archives in both traditional
classification [6] and TSC [1] give indications as to the classification methods
that could be suitable for this particular problem space. [1] found that for
spectral datasets (of which there were 7 of 85 datasets in total) classifiers that
considered the full series similarity were consistently better than those considering
subseries similarity, frequency or distribution. Throughout both evaluations, the
effectiveness of ensembling was clearly evident. In the benchmark experiments
presented in this work we use a range of classifiers classically used in chemometrics,
in addition to state of the art and ensemble classification methods.



3 Data

There are many experimental factors that could confound a non-invasive alcohol
classification system in the field: ambient light and environmental conditions;
variation in spectral hardware; and the measurement habits of different users may
all cause variation in the resulting spectra. However, we believe one of the largest
sources of variation which needs to be accounted for arises from the properties
of the bottle a sample is contained in. Bottle shape and size, glass thickness
and colour, and interfering labeling and embossing can all work to frustrate the
collection of consistent, reliable spectra. Therefore, with these experiments, we
primarily wish to determine the difficulty of measuring and classifying the alcohol
content of samples in arbitrary bottles.

We have conducted experiments using 44 different examples of real, non-
standardised bottles. While most of the bottles are transparent and cylindrical,
some are coloured, rectangular or skewed. Using a single StellarNet BLACK-
Comet-SR spectrometer, transmission near-infrared spectra over a one second
integration time of ethanol, methanol and water solutions within each bottle
were collected to form two datasets. For the ethanol concentration experiments,
40% ethanol (with the remainder being water) is taken to be the ‘genuine’ case,
while concentrations of 35% and 38% ethanol are taken to be ‘forgeries’. The
second dataset is detecting the presence of methanol. With 40% total alcohol
concentration being maintained, solutions with 1%, 2% and 5% methanol (v/v)
form the forged class, while 0% methanol (i.e 40% ethanol) constitutes not forged.
The two classification problems are therefore to determine from a spectra whether
or not a solution within an arbitrary sealed bottle 1) has less than 40% alcohol
or 2) contains dangerous levels of methanol. Information on the bottles and the
raw data, including labels for bottle and concentration for each reading, can be
downloaded at6.

Three batches of each alcohol concentration were produced, and for each
solution in each bottle the sample is placed, a spectra taken, and placed again
for a total of three readings. A total of over 2000 readings were taken. Bottles
were positioned such that the light travels through the widest part of the bottle
while avoiding labelling, embossing and seals as much as possible. However, to
mimic future conditions a precise recreation of the exact path on each placement
was intentionally not attempted. For simplicity, and to mimic a possible portable
sampling station, the geometry of the light source and receiver was fixed at
15cm; enough to accommodate the widest bottles tested. Dark readings were
subtracted from each spectra. Data collection took place over the course of
multiple weeks by a single tester. Batches of each concentration were spread out
over that time-frame, to reduce the chance of any patterns based on time of
measurement forming. Spectra are presented in the wavelength range 876.5nm -
1101nm, sampled every 0.5nm, and each spectrum is standardised.

To help give an intuition of the classification problem, Figure 1 shows the
average series of each class to demonstrate their differences. The progressively

6 http://research.cmp.uea.ac.uk/DetectingForgedAlcohol/Data/
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Fig. 1. Graphs showing the average series of each class, overall standard deviation and
range for the ethanol and methanol concentration datasets. For each image, the main
discriminatory region is zoomed.

shaded regions show the overall standard deviation and range of intensities at
each wavelength. The fact that these are difficult to distinguish by eye is itself
quite telling. The overall variance in the dataset is very low, and the inter-class
variance a fraction of that.

The zoomed regions show the wavelength ranges where alcohols are known to
have a strong resonance. A clear separation between classes can be seen within the
ethanol problem. However, for methanol the classes appear to be indistinguishable.
Ethanol and methanol have overlapping resonances, and therefore the fact that
the overall concentration of alcohol remains at 40% means any difference between
the class values in the resulting spectra is drastically reduced.

Relative to the apparent differences in the average class spectra, individual
series are greatly affected by noise introduced by a variety of means through
the nature of the experiment, further increasing classification difficulty. For
example, an individual series may be skewed by the lensing effects of a uniquely
shaped bottle. This is evidenced by Figure 2. It shows the first three PCs of the
transformed ethanol dataset, which explain 95% of the total variance. In (a), the
instances are categorised by their ethanol concentrations. While some separation
is found between the two classes, this is observed mostly in the second and third
PCs, which account for only 17% of the total variation. The first PC, as (b)
shows, for the most part explains variance due to the bottles. This is in line with
our expectations that bottle variation would be one of the larger obstacles to
overcome for the final use case of an authentication system. While many bottles
are clustered close together, there are some that form clear and separate clusters
of their own. As might be expected, these are bottles that have some particularly
non-standard bottle property, such as irregular shape or colour.

Promisingly, the PCA transform does suggest a good separation between
ethanol concentrations within a particular type of bottle, as illustrated by the
outlying bottle clusters when compared between figures. The equivalent figures
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Fig. 2. Graphs of the top three PCs of the PCA-transformed ethanol forgery dataset,
with samples categorised by (a) ‘genuine’ (blue dot) and ‘forgery’ (red cross), and (b)
by bottle.

for the methanol dataset are not included in this paper for the sake of readability
and space, however they (and the source ethanol images including keys) are
available on-line7. What they show is analogous to figure 1(b); that the PCA is
almost entirely unable to distinguish between the alcohol concentrations, however
trends by bottle type are largely the same.

4 Experimental Setup

For this application, our long-term hypothesis is that TSC methods that consider
overall shape may be able to correct for structural defects in the spectra brought
about by the many sources of noise involved with non-invasive spectra collection.
For example, a linear method built on a small number of selected attributes
may not be able to account for high-level structural changes in a new test case
caused by an abnormally shaped bottle. Using the datasets that have been
formed, we perform benchmark and exploratory evaluations with a wide variety
of classification schemes.

The classifiers evaluated are: Logistic Regression (LR); Partial Least Squares
Regression (PLSR); Multilayer Perceptron (MLP); 1-Nearest-Neighbour with
Euclidean Distance (1NN); C4.5 Decision Tree (C45); linear SVM (SVML);
quadratic SVM (SVMQ); radial basis function SVM (SVMRBF); Rotation For-
est [11] (RotF); Random Forest [3] (RandF); Heterogeneous Ensemble of Standard
Classification Algorithms [8] (HESCA), and for the TSC-specific classifiers: Ran-
dom Interval Spectral Ensemble [2] (RISE); Bag of SFA Symbols [12] (BOSS);
and Time Series Forest [5] (TSF).

We evaluated each classifier on the datasets using a leave-one-bottle-out
(LOBO) cross validation. In this scheme, all samples contained within a single
bottle are reserved for the test set, with the remainder forming the training

7 http://research.cmp.uea.ac.uk/DetectingForgedAlcohol/FiguresAndTables/



set. By evaluating in this manner, classifiers should not be able to leverage any
discriminatory features caused by the bottle itself, focusing on alcohol level as
the only commonly varying factor.

To avoid ambiguity, we stress that in all cases the training of a classifier,
including any hyper-parameter tuning and model selection required, is performed
independently on the train set of a given fold, and the trained classifier is evaluated
exactly once on the corresponding test set. Our code8 reproduces the splits used
in this evaluation exactly, and results9 are able to be recreated.

Our primary concern is generally accuracy (ACC) because of its ease of
motivation and interpretability. However, in applications such as this the costs
of measurement, verification, and misclassification externally influence the ways
in which decisions need to be made. For example, if the costs of confirming the
legitimacy of a suspect bottle are high, relative to the resources available to
the tester, then the decision boundary may be skewed to favour the ‘genuine’
label. As a result, only samples that the device is more confident are fake will be
seized or sent for further analysis. Accuracy cannot entirely capture these factors.
Therefore balanced accuracy (BALACC) and measures that assess the quality of
the classifiers’ probabilistic outputs are also reported; the Log-Likelihood (LL)
and the Area Under the Receiver Operating Characteristic (AUROC).

5 Results

Table 1 details the average accuracies achieved by each classifier on all datasets
formed for the sake of space, however each subset of experiments is separately
discussed in turn with the superscripts in column and section headers denoting
the particular results being discussed.

5.1 Leave-one-bottle-out Cross Validationa

When considering the LOBO experiments on the original (time series form) data,
two trends are immediately apparent: ethanol concentration, with the correct
models, can be classified with high accuracy; determining methanol concentration
in a constant overall alcohol level is much more difficult. Only some of the
classifiers tested achieving higher than the minimum expected accuracy of 0.75,
the proportion of the majority class.

To discover what classifiers are best for each evaluation statistics, we can
perform statistical tests of difference over fold scores because all classifiers are
evaluated on identical splits, which are reproducible with the published code.
Figure 3 is a critical difference diagram over all folds of the LOBO-sampled
ethanol and methanol datasets combined. Classifiers are ordered by average rank
over fold scores, and those connected by a bar are pairwise not significantly
different between each other, p = 0.05.

8 http://research.cmp.uea.ac.uk/DetectingForgedAlcohol/Code/
9 http://research.cmp.uea.ac.uk/DetectingForgedAlcohol/Results/



Table 1. Average accuracies (and standard deviations) over all folds of the alcohol
datasets. The best classification accuracies on each dataset are bold.

Classifier Ethanol LOBOa Methanol LOBOa PCA Ethanol LOBOc PCA Methanol LOBOc Bottleb

1NN 0.866(0.093) 0.672(0.103) 0.779(0.104) 0.627(0.101) 0.541(0.017)
BOSS 0.913(0.086) 0.786(0.050) - - 0.622(0.021)
C45 0.824(0.132) 0.658(0.098) 0.796(0.106) 0.750(0.001) 0.412(0.017)

HESCA 0.965(0.069) 0.843(0.079) 0.818(0.104) 0.750(0.001) 0.639(0.020)
LR 0.964(0.045) 0.809(0.100) 0.807(0.092) 0.744(0.030) 0.430(0.018)

MLP 0.960(0.068) 0.834(0.083) 0.813(0.108) 0.750(0.001) 0.617(0.027)
PLSR 0.965(0.053) 0.860(0.073) 0.801(0.089) 0.745(0.026) 0.061(0.010)
RandF 0.888(0.105) 0.758(0.047) 0.817(0.093) 0.714(0.060) 0.587(0.015)
RISE 0.776(0.115) 0.780(0.031) - - 0.622(0.016)
RotF 0.938(0.078) 0.839(0.049) 0.815(0.104) 0.750(0.001) 0.653(0.014)

SVML 0.945(0.075) 0.838(0.077) 0.801(0.094) 0.750(0.001) 0.517(0.017)
SVMQ 0.959(0.103) 0.864(0.102) 0.803(0.092) 0.750(0.001) 0.656(0.019)

SVMRBF 0.881(0.098) 0.841(0.092) 0.806(0.091) 0.750(0.001) 0.349(0.015)
TSF 0.868(0.112) 0.769(0.029) - - 0.635(0.018)

Because each test fold represents a single bottle, the accuracy on a fold gives
an indication of the difficulty that a particular bottle adds to the classification
problem. We took the top four classifiers on the ethanol problem (PLSR, LR,
MLP, and HESCA) which all achieved similarly strong performances, and looked
at which bottles were preventing perfect classification. On 34 of the 44 folds, at
least one of these top four classifiers achieved an accuracy of 1. Where only a
subset of the four classifiers met this criteria, the rest only ever misclassified only
one or two test cases.

The worst fold accuracy represents the Bernheim Original Kentucky Straight
wheat whiskey bottle, where the average accuracy across the four classifiers
is 0.76. Only five bottles had an average accuracy of less than 0.9, and all of
them are irregular in some way. This does lend credence to the idea that the
determination of alcohol concentration cannot be done entirely irrespective of
bottle. However, the fact that there is clearly some transferability (evidenced by
better-than-guessing accuracy in this LOBO format) is promising.

In [7] and [10], coloured glass posed challenges for the collection of Raman
spectra, which particularly struggles to handle fluorescence, but also for NIRS in
[10]. Our experiments included three green-glass bottles, however on these no
significant drop in predictive accuracy was observed in the same analysis of the
top four classifiers. These three bottles also showed no clear separation from the
largest central cluster in the PCA transform presented in Figure 2b.

5.2 Classifying the bottleb

The PCA transform of the ethanol dataset, shown in Figure 2b, indicated that
the majority of the variance corresponded with differences in the containing
bottle’s properties. Further, most of the first PC was caused by a small number
of irregularly shaped bottles. The majority of bottles otherwise formed a dense
cluster. To further investigate the extent to which features of the bottle are
detectable in the spectra, we ran experiments with the same set of classifiers but
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Fig. 3. Critical difference diagrams for the four evaluation statistics on the alcohol
datasets.

with the containing bottle as the class label, instead of alcohol concentration.
The full dataset was split 30 times using random stratified sampling with a 70/30
train/test split. We would expect the outlying bottles on the PCA transform
to be the easiest to classify, while most standard bottles can only be guessed
at. The best accuracies achieved were up to 0.656 (SVMQ), which on a 44 class
problem is quite high. It is worth noting also that the non-linear methods and
especially TSC methods make a relative improvement on this problem, signifying
the different nature of the discriminatory features.

In the interest of finding where the classifiers were making their errors, we
grouped bottles by whether they could be described as being standard (clear glass
and cylindrical, 28 bottles) or irregular (coloured glass and/or non-cylindrical,
16 bottles). Considering the SVMQ’s predictions, we counted the incorrect
classifications for cases with a standard bottle label classified as a standard
bottle, standard classified as irregular, irregular classified as standard, and
irregular classified as irregular. The first of these four cases accounts for 69%
of the total error, while the remaining three account for a little over 10% each.
When correcting for the number of possible ways to misclassify in each scenario,
SVMQ was still twice as likely to make the first kind of error as the last.



These results have positive implications for the original goal of non-invasive
alcohol level determination. The fact that it is relatively much easier to mistake
one standard bottle for another suggests that a classifier could be reliably trained
under the assumption that the test sample bottle has certain properties matching
those in the train set. In terms of the practical use and production costs of a
device, the worst case is that each individual type of bottle requires its own
adequately populated training data for a model to learn on. While this or at least
a two-stage classification procedure may still be needed for irregular bottles, a
device that can effectively classify the contents of bottles within some particular
range of properties is still a worthwhile improvement over the worst case.

5.3 PCA Transformsc

Lastly, we repeated the LOBO classification experiments again with PCA-
transformed versions of the datasets (calculated and applied to each resample
individually), maintaining components that explain 95% of the variance. Analysis
of spectral data in the literature often involves a dimensionality-reducing trans-
formation such as PCA, both to highlight discriminatory variance and reduce the
computation time of analysis. However, in this case it appears to reduce accuracy
relative to classification performed on the time series, in agreement with [7].

The methanol PCA transform seemingly cannot discriminate between concen-
trations at all, with all classifiers simply picking the majority class. For ethanol,
all classifiers except 1NN achieve very similar accuracies. Referring to Figure 2a,
it would seem that most of the classifiers are forming almost identical decision
boundaries, the same that a human naively would by eye.

6 Conclusions

We have demonstrated the feasibility of determining alcohol concentration non-
invasively in arbitrary bottles using near infrared spectroscopy in combination
with machine learning. While ethanol level could be classified with high accuracy,
methanol concentration within a consistent overall alcohol level was much more
difficult to detect. However, some classifiers demonstrated results significantly
better than random guessing, suggesting that the discriminatory features are
not entirely lost at the physical hardware level. There may still be room for
improvement with different optical geometries and better-tailored data processing
and model selection. Bottles with particularly unique properties introduced
extra difficulty, but the contents of more standard bottles could be learned and
determined with very good transferability.

Traditional methods within chemometrics such as Logistic and Partial Least
Squares regression were strong. However, Principal Component Analysis led to
significantly decreased performance. A quadratic support vector machine and
simple neural network architecture also performed well. A larger computational
investment for more thorough tuning would likely lead to improved results for
these. A combination of tuning and ensembling these along with the regressive



methods is a promising route to follow, especially due to their relatively fast
prediction times once trained. Algorithms bespoke to time series classification
did not provide an immediate increase in predictive power.
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