227 research outputs found

    The SAMI Galaxy Survey: The link between angular momentum and optical morphology

    Get PDF
    We investigate the relationship between stellar and gas specific angular momentum j, stellar massM* and optical morphology for a sample of 488 galaxies extracted from the Sydney-AAO Multi-object Integral field Galaxy Survey.We find that j, measured within one effective radius, monotonically increases with M* and that, for M* > 109.5 M⊙, the scatter in this relation strongly correlates with optical morphology (i.e. visual classification and Sérsic index). These findings confirm that massive galaxies of all types lie on a plane relating mass, angular momentum and stellar-light distribution, and suggest that the large-scale morphology of a galaxy is regulated by its mass and dynamical state. We show that the significant scatter in the M*-j relation is accounted for by the fact that, at fixed stellar mass, the contribution of ordered motions to the dynamical support of galaxies varies by at least a factor of 3. Indeed, the stellar spin parameter (quantified via λR) correlates strongly with Sérsic and concentration indices. This correlation is particularly strong once slow rotators are removed from the sample, showing that late-type galaxies and early-type fast rotators form a continuous class of objects in terms of their kinematic properties

    PTF10nvg: An Outbursting Class I Protostar in the Pelican/North American Nebula

    Get PDF
    During a synoptic survey of the North American Nebula region, the Palomar Transient Factory (PTF) detected an optical outburst (dubbed PTF10nvg) associated with the previously unstudied flat or rising spectrum infrared source IRAS 20496+4354. The PTF R-band light curve reveals that PTF10nvg brightened by more than 5 mag during the current outburst, rising to a peak magnitude of R~13.5 in 2010 Sep. Follow-up observations indicate PTF10nvg has undergone a similar ~5 mag brightening in the K band, and possesses a rich emission-line spectrum, including numerous lines commonly assumed to trace mass accretion and outflows. Many of these lines are blueshifted by ~175 km/s from the North American Nebula's rest velocity, suggesting that PTF10nvg is driving an outflow. Optical spectra of PTF10nvg show several TiO/VO bandheads fully in emission, indicating the presence of an unusual amount of dense (> 10^10 cm^-3), warm (1500-4000 K) circumstellar material. Near-infrared spectra of PTF10nvg appear quite similar to a spectrum of McNeil's Nebula/V1647 Ori, a young star which has undergone several brightenings in recent decades, and 06297+1021W, a Class I protostar with a similarly rich near--infrared emission line spectrum. While further monitoring is required to fully understand this event, we conclude that the brightening of PTF10nvg is indicative of enhanced accretion and outflow in this Class-I-type protostellar object, similar to the behavior of V1647 Ori in 2004-2005.Comment: Accepted to the Astronomical Journal; 21 pages, 11 figures, 6 tables in emulateapj format; v2 fixes typo in abstract; v3 updates status to accepted, adjusts affiliations, adds acknowledgmen

    The SAMI Galaxy Survey : mass as the driver of the kinematic morphology - density relation in clusters

    Get PDF
    We examine the kinematic morphology of early-type galaxies (ETGs) in eight galaxy clusters in the Sydney-AAO Multi-object Integral-field spectrograph Galaxy Survey. The clusters cover a mass range of 14.2log(M200/M☉) <15.2 and we measure spatially resolved stellar kinematics for 315 member galaxies with stellar masses 10.0 < log(M*/M☉) ≤ 11.7 within 1 R 200 of the cluster centers. We calculate the spin parameter, λ R , and use this to classify the kinematic morphology of the galaxies as fast or slow rotators (SRs). The total fraction of SRs in the ETG population is F SR = 0.14 ± 0.02 and does not depend on host cluster mass. Across the eight clusters, the fraction of SRs increases with increasing local overdensity. We also find that the slow-rotator fraction increases at small clustercentric radii (R cl < 0.3 R 200), and note that there is also an increase in the slow-rotator fraction at R cl ~ 0.6 R 200. The SRs at these larger radii reside in the cluster substructure. We find that the strongest increase in the slow-rotator fraction occurs with increasing stellar mass. After accounting for the strong correlation with stellar mass, we find no significant relationship between spin parameter and local overdensity in the cluster environment. We conclude that the primary driver for the kinematic morphology–density relationship in galaxy clusters is the changing distribution of galaxy stellar mass with the local environment. The presence of SRs in the substructure suggests that the cluster kinematic morphology–density relationship is a result of mass segregation of slow-rotating galaxies forming in groups that later merge with clusters and sink to the cluster center via dynamical friction.Publisher PDFPeer reviewe

    Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides

    Get PDF
    In this study, we examine microbial communities of early developmental stages of the coral Porites astreoides by sequence analysis of cloned 16S rRNA genes, terminal restriction fragment length polymorphism (TRFLP), and fluorescence in situ hybridization (FISH) imaging. Bacteria are associated with the ectoderm layer in newly released planula larvae, in 4-day-old planulae, and on the newly forming mesenteries surrounding developing septa in juvenile polyps after settlement. Roseobacter clade-associated (RCA) bacteria and Marinobacter sp. are consistently detected in specimens of P. astreoides spanning three early developmental stages, two locations in the Caribbean and 3 years of collection. Multi-response permutation procedures analysis on the TRFLP results do not support significant variation in the bacterial communities associated with P. astreoides larvae across collection location, collection year or developmental stage. The results are the first evidence of vertical transmission (from parent to offspring) of bacteria in corals. The results also show that at least two groups of bacterial taxa, the RCA bacteria and Marinobacter, are consistently associated with juvenile P. astreoides against a complex background of microbial associations, indicating that some components of the microbial community are long-term associates of the corals and may impact host health and survival

    The SAMI Galaxy Survey: revisiting galaxy classification through high-order stellar kinematics

    Get PDF
    Recent cosmological hydrodynamical simulations suggest that integral field spectroscopy can connect the high-order stellar kinematic moments h3 (~skewness) and h4 (~kurtosis) in galaxies to their cosmological assembly history. Here, we assess these results by measuring the stellar kinematics on a sample of 315 galaxies, without a morphological selection, using two-dimensional integral field data from the SAMI Galaxy Survey. Proxies for the spin parameter (λRe{\lambda }_{{R}_{{\rm{e}}}}) and ellipticity (ϵe{\epsilon }_{{\rm{e}}}) are used to separate fast and slow rotators; there exists a good correspondence to regular and non-regular rotators, respectively, as also seen in earlier studies. We confirm that regular rotators show a strong h3 versus V/σV/\sigma anti-correlation, whereas quasi-regular and non-regular rotators show a more vertical relation in h3 and V/σV/\sigma . Motivated by recent cosmological simulations, we develop an alternative approach to kinematically classify galaxies from their individual h3 versus V/σV/\sigma signatures. Within the SAMI Galaxy Survey, we identify five classes of high-order stellar kinematic signatures using Gaussian mixture models. Class 1 corresponds to slow rotators, whereas Classes 2–5 correspond to fast rotators. We find that galaxies with similar {\lambda }_{{R}_{{\rm{e}}}}\mbox{--}{\epsilon }_{{\rm{e}}} values can show distinctly different {h}_{3}\mbox{--}V/\sigma signatures. Class 5 objects are previously unidentified fast rotators that show a weak h3 versus V/σV/\sigma anti-correlation. From simulations, these objects are predicted to be disk-less galaxies formed by gas-poor mergers. From morphological examination, however, there is evidence for large stellar disks. Instead, Class 5 objects are more likely disturbed galaxies, have counter-rotating bulges, or bars in edge-on galaxies. Finally, we interpret the strong anti-correlation in h3 versus V/σV/\sigma as evidence for disks in most fast rotators, suggesting a dearth of gas-poor mergers among fast rotators

    The Primordial Inflation Polarization Explorer (PIPER): Current Status and Performance of the First Flight

    Get PDF
    The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne instrument optimized to measure the polarization of the CMB at large angular scales. It will map 85% of the sky over a series of conventional balloon flights from the Northern and Southern hemispheres, measuring the B-mode polarization power spectrumover a range of multipoles from 2-300 covering both the reionization bump and the recombination peak, with sensitivity to measure the tensor-to-scalar ratio down to r = 0.007. PIPER will observe in four frequency bands centered at 200, 270, 350, and 600 GHz to characterize dust foregrounds. The instrument has background-limited sensitivity provided by fully cryogenic (1.7 K) optics focusing the sky signal onto kilo-pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers held at 100 mK. Polarization sensitivity and systematiccontrol are provided by front-end Variable-delay Polarization Modulators (VPMs). PIPER had its engineering flight in October 2017 from Fort Sumner, New Mexico. This papers outlines the major components in the PIPER system discussing the conceptual design as well as specific choices made for PIPER. We also report on the results of the engineering flight, looking at the functionality of the payload systems, particularly VPM, as well as pointing out areas of improvement

    The SAMI Galaxy Survey : spatially resolving the main sequence of star formation

    Get PDF
    We present the ∼800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O iii]/H β, [N ii]/H α, [S ii]/H α, and [O i]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.Publisher PDFPeer reviewe

    Promotion, prevention and protection: interventions at the population- and community-levels for mental, neurological and substance use disorders in low- and middle-income countries

    Get PDF
    Background In addition to services within the health system, interventions at the population and community levels are also important for the promotion of mental health, primary prevention of mental, neurological and substance use (MNS) disorders, identification and case detection of MNS disorders; and to a lesser degree treatment, care and rehabilitation. This study aims to identify “best practice” and “good practice” interventions that can feasibly be delivered at these population- and community-levels in low- and middle-income countries (LMICs), to aid the identification of resource efficiencies and allocation in LMICs. Methods A narrative review was conducted given the wide range of relevant interventions. Expert consensus was used to identify “best practice” at the population-level on the basis of existing quasi-experimental natural experiments and cost effectiveness, with small scale emerging and promising evidence comprising “good practice”. At the community-level, using expert consensus, the ACE (Assessing Cost-Effectiveness in Prevention Project) grading system was used to differentiate “best practice” interventions with sufficient evidence from “good practice” interventions with limited but promising evidence. ResultsAt the population-level, laws and regulations to control alcohol demand and restrict access to lethal means of suicide were considered “best practice”. Child protection laws, improved control of neurocysticercosis and mass awareness campaigns were identified as “good practice”. At the community level, socio-emotional learning programmes in schools and parenting programmes during infancy were identified as “best practice”. The following were all identified as “good practice”: Integrating mental health promotion strategies into workplace occupational health and safety policies; mental health information and awareness programmes as well as detection of MNS disorders in schools; early child enrichment/preschool educational programs and parenting programs for children aged 2–14 years; gender equity and/or economic empowerment programs for vulnerable groups; training of gatekeepers to identify people with MNS disorders in the community; and training non-specialist community members at a neighbourhood level to assist with community-based support and rehabilitation of people with mental disorders. Conclusion Interventions provided at the population- and community-levels have an important role to play in promoting mental health, preventing the onset, and protecting those with MNS disorders. The importance of inter-sectoral enga

    Maize Inbreds Exhibit High Levels of Copy Number Variation (CNV) and Presence/Absence Variation (PAV) in Genome Content

    Get PDF
    Following the domestication of maize over the past ∼10,000 years, breeders have exploited the extensive genetic diversity of this species to mold its phenotype to meet human needs. The extent of structural variation, including copy number variation (CNV) and presence/absence variation (PAV), which are thought to contribute to the extraordinary phenotypic diversity and plasticity of this important crop, have not been elucidated. Whole-genome, array-based, comparative genomic hybridization (CGH) revealed a level of structural diversity between the inbred lines B73 and Mo17 that is unprecedented among higher eukaryotes. A detailed analysis of altered segments of DNA conservatively estimates that there are several hundred CNV sequences among the two genotypes, as well as several thousand PAV sequences that are present in B73 but not Mo17. Haplotype-specific PAVs contain hundreds of single-copy, expressed genes that may contribute to heterosis and to the extraordinary phenotypic diversity of this important crop
    corecore