167 research outputs found

    Stochastic Dominance Analysis of Bioenergy Crops as a Production Alternative on an East Tennessee Beef and Crop Farm

    Get PDF
    This study evaluated prices and incentives for switchgrass stated in a biorefinery’s contract terms that induce switchgrass production on an east Tennessee representative farm when compared with traditional enterprises. The alternate contract terms imitated current subsidies/incentives offered as well as incentives and cost share terms not in the BCAP.switchgrass, contract, risk aversion, net return, Farm Management, Production Economics, Resource /Energy Economics and Policy, Q12,

    Traffic-Related Air Pollution and All-Cause Mortality during Tuberculosis Treatment in California.

    Get PDF
    BackgroundAmbient air pollution and tuberculosis (TB) have an impact on public health worldwide, yet associations between the two remain uncertain.ObjectiveWe determined the impact of residential traffic on mortality during treatment of active TB.MethodsFrom 2000-2012, we enrolled 32,875 patients in California with active TB and followed them throughout treatment. We obtained patient data from the California Tuberculosis Registry and calculated traffic volumes and traffic densities in 100- to 400-m radius buffers around residential addresses. We used Cox models to determine mortality hazard ratios, controlling for demographic, socioeconomic, and clinical potential confounders. We categorized traffic exposures as quintiles and determined trends using Wald tests.ResultsParticipants contributed 22,576 person-years at risk. There were 2,305 deaths during treatment for a crude mortality rate of 1,021 deaths per 10,000 person-years. Traffic volumes and traffic densities in all buffers around patient residences were associated with increased mortality during TB treatment, although the findings were not statistically significant in all buffers. As the buffer size decreased, fifth-quintile mortality hazards increased, and trends across quintiles of traffic exposure became more statistically significant. Increasing quintiles of nearest-road traffic volumes in the 100-m buffer were associated with 3%, 14%, 19%, and 28% increased risk of death during TB treatment [first quintile, referent; second quintile hazard ratio (HR)=1.03 [95% confidence interval (CI): 0.86, 1.25]; third quintile HR=1.14 (95% CI: 0.95, 1.37); fourth quintile HR=1.19 (95% CI: 0.99, 1.43); fifth quintile HR=1.28 (95% CI: 1.07, 1.53), respectively; p-trend=0.002].ConclusionsResidential proximity to road traffic volumes and traffic density were associated with increased all-cause mortality in patients undergoing treatment for active tuberculosis even after adjusting for multiple demographic, socioeconomic, and clinical factors, suggesting that TB patients are susceptible to the adverse health effects of traffic-related air pollution. https://doi.org/10.1289/EHP1699

    Combining Community Engagement and Scientific Approaches in Next-Generation Monitor Siting: The Case of the Imperial County Community Air Network.

    Get PDF
    Air pollution continues to be a global public health threat, and the expanding availability of small, low-cost air sensors has led to increased interest in both personal and crowd-sourced air monitoring. However, to date, few low-cost air monitoring networks have been developed with the scientific rigor or continuity needed to conduct public health surveillance and inform policy. In Imperial County, California, near the U.S./Mexico border, we used a collaborative, community-engaged process to develop a community air monitoring network that attains the scientific rigor required for research, while also achieving community priorities. By engaging community residents in the project design, monitor siting processes, data dissemination, and other key activities, the resulting air monitoring network data are relevant, trusted, understandable, and used by community residents. Integration of spatial analysis and air monitoring best practices into the network development process ensures that the data are reliable and appropriate for use in research activities. This combined approach results in a community air monitoring network that is better able to inform community residents, support research activities, guide public policy, and improve public health. Here we detail the monitor siting process and outline the advantages and challenges of this approach

    The Imperial County Community Air Monitoring Network: A Model for Community-based Environmental Monitoring for Public Health Action.

    Get PDF
    The Imperial County Community Air Monitoring Network (the Network) is a collaborative group of community, academic, nongovernmental, and government partners designed to fill the need for more detailed data on particulate matter in an area that often exceeds air quality standards. The Network employs a community-based environmental monitoring process in which the community and researchers have specific, well-defined roles as part of an equitable partnership that also includes shared decision-making to determine study direction, plan research protocols, and conduct project activities. The Network is currently producing real-time particulate matter data from 40 low-cost sensors throughout Imperial County, one of the largest community-based air networks in the United States. Establishment of a community-led air network involves engaging community members to be citizen-scientists in the monitoring, siting, and data collection process. Attention to technical issues regarding instrument calibration and validation and electronic transfer and storage of data is also essential. Finally, continued community health improvements will be predicated on facilitating community ownership and sustainability of the network after research funds have been expended

    Evaluation of a Heat Vulnerability Index on Abnormally Hot Days: An Environmental Public Health Tracking Study

    Get PDF
    Background: Extreme hot weather conditions have been associated with increased morbidity and mortality, but risks are not evenly distributed throughout the population. Previously, a heat vulnerability index (HVI) was created to geographically locate populations with increased vulnerability to heat in metropolitan areas throughout the United States

    Integrated Pharmacodynamic Analysis Identifies Two Metabolic Adaption Pathways to Metformin in Breast Cancer.

    Get PDF
    Late-phase clinical trials investigating metformin as a cancer therapy are underway. However, there remains controversy as to the mode of action of metformin in tumors at clinical doses. We conducted a clinical study integrating measurement of markers of systemic metabolism, dynamic FDG-PET-CT, transcriptomics, and metabolomics at paired time points to profile the bioactivity of metformin in primary breast cancer. We show metformin reduces the levels of mitochondrial metabolites, activates multiple mitochondrial metabolic pathways, and increases 18-FDG flux in tumors. Two tumor groups are identified with distinct metabolic responses, an OXPHOS transcriptional response (OTR) group for which there is an increase in OXPHOS gene transcription and an FDG response group with increased 18-FDG uptake. Increase in proliferation, as measured by a validated proliferation signature, suggested that patients in the OTR group were resistant to metformin treatment. We conclude that mitochondrial response to metformin in primary breast cancer may define anti-tumor effect

    Expression of the phosphorylated MEK5 protein is associated with TNM staging of colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activation of MEK5 in many cancers is associated with carcinogenesis through aberrant cell proliferation. In this study, we determined the level of phosphorylated MEK5 (pMEK5) expression in human colorectal cancer (CRC) tissues and correlated it with clinicopathologic data.</p> <p>Methods</p> <p>pMEK5 expression was examined by immunohistochemistry in a tissue microarray (TMA) containing 335 clinicopathologic characterized CRC cases and 80 cases of nontumor colorectal tissues. pMEK5 expression of 19 cases of primary CRC lesions and paired with normal mucosa was examined by Western blotting. The relationship between pMEK5 expression in CRC and clinicopathologic parameters, and the association of pMEK5 expression with CRC survival were analyzed respectively.</p> <p>Results</p> <p>pMEK5 expression was significantly higher in CRC tissues (185 out of 335, 55.2%) than in normal tissues (6 out of 80, 7.5%; <it>P </it>< 0.001). Western blotting demonstrated that pMEK5 expression was upregulated in 12 of 19 CRC tissues (62.1%) compared to the corresponding adjacent nontumor colorectal tissues. Overexpression of pMEK5 in CRC tissues was significantly correlated to the depth of invasion (<it>P </it>= 0.001), lymph node metastasis (<it>P </it>< 0.001), distant metastasis (<it>P </it>< 0.001) and high preoperative CEA level (<it>P </it>< 0.001). Consistently, the pMEK5 level in CRC tissues was increased following stage progression of the disease (<it>P </it>< 0.001). Analysis of the survival curves showed a significantly worse 5-year disease-free (<it>P </it>= 0.002) and 5-year overall survival rate (<it>P </it>< 0.001) for patients whose tumors overexpressed pMEK5. However, in multivariate analysis, pMEK5 was not an independent prognostic factor for CRC (DFS: <it>P </it>= 0.139; OS: <it>P </it>= 0.071).</p> <p>Conclusions</p> <p>pMEK5 expression is correlated with the staging of CRC and its expression might be helpful to the TNM staging system of CRC.</p

    Can we learn from the pathogenetic strategies of group A hemolytic streptococci how tissues are injured and organs fail in post-infectious and inflammatory sequelae?

    Full text link
    The purpose of this review-hypothesis is to discuss the literature which had proposed the concept that the mechanisms by which infectious and inflammatory processes induce cell and tissue injury, in vivo, might paradoxically involve a deleterious synergistic ‘cross-talk’, among microbial- and host-derived pro-inflammatory agonists. This argument is based on studies of the mechanisms of tissue damage caused by catalase-negative group A hemolytic streptococci and also on a large body of evidence describing synergistic interactions among a multiplicity of agonists leading to cell and tissue damage in inflammatory and infectious processes. A very rapid cell damage (necrosis), accompanied by the release of large amounts of arachidonic acid and metabolites, could be induced when subtoxic amounts of oxidants (superoxide, oxidants generated by xanthine-xanthine oxidase, HOCl, NO), synergized with subtoxic amounts of a large series of membrane-perforating agents (streptococcal and other bacterial-derived hemolysins, phospholipases A 2 and C, lysophosphatides, cationic proteins, fatty acids, xenobiotics, the attack complex of complement and certain cytokines). Subtoxic amounts of proteinases (elastase, cathepsin G, plasmin, trypsin) very dramatically further enhanced cell damage induced by combinations between oxidants and the membrane perforators. Thus, irrespective of the source of agonists, whether derived from microorganisms or from the hosts, a triad comprised of an oxidant, a membrane perforator, and a proteinase constitutes a potent cytolytic cocktail the activity of which may be further enhanced by certain cytokines. The role played by non-biodegradable microbial cell wall components (lipopolysaccharide, lipoteichoic acid, peptidoglycan) released following polycation- and antibiotic-induced bacteriolysis in the activation of macrophages to release oxidants, cytolytic cytokines and NO is also discussed in relation to the pathophysiology of granulomatous inflammation and sepsis. The recent failures to prevent septic shock by the administration of only single antagonists is disconcerting. It suggests, however, that since tissue damage in post-infectious syndromes is caused by synergistic interactions among a multiplicity of agents, only cocktails of appropriate antagonists, if administered at the early phase of infection and to patients at high risk, might prevent the development of post-infectious syndromes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72535/1/j.1574-695X.1999.tb01357.x.pd

    Why do banks promise to pay par on demand?

    Get PDF
    We survey the theories of why banks promise to pay par on demand and examine evidence about the conditions under which banks have promised to pay the par value of deposits and banknotes on demand when holding only fractional reserves. The theoretical literature can be broadly divided into four strands: liquidity provision, asymmetric information, legal restrictions, and a medium of exchange. We assume that it is not zero cost to make a promise to redeem a liability at par value on demand. If so, then the conditions in the theories that result in par redemption are possible explanations of why banks promise to pay par on demand. If the explanation based on customers’ demand for liquidity is correct, payment of deposits at par will be promised when banks hold assets that are illiquid in the short run. If the asymmetric-information explanation based on the difficulty of valuing assets is correct, the marketability of banks’ assets determines whether banks promise to pay par. If the legal restrictions explanation of par redemption is correct, banks will not promise to pay par if they are not required to do so. If the transaction explanation is correct, banks will promise to pay par value only if the deposits are used in transactions. After the survey of the theoretical literature, we examine the history of banking in several countries in different eras: fourth-century Athens, medieval Italy, Japan, and free banking and money market mutual funds in the United States. We find that all of the theories can explain some of the observed banking arrangements, and none explain all of them
    corecore