67 research outputs found

    Heat flux measurement from thermal infrared imagery in low-flux fumarolic zones: Example of the Ty fault (La Soufrière de Guadeloupe)

    Get PDF
    International audienceMonitoring the geothermal flux of a dormant volcano is necessary both for hazard assessment and for studying hydrothermal systems. Heat from a magma body located at depth is transported by steam to the surface, where it is expelled in fumaroles if the heat flow exceeds 500 W/m2. If the heat flow is lower than 500 W/m2, steam mainly condensates in the soil close to surface and produces a thermal anomaly detectable at the surface. In this study, we propose a method to quantify low heat fluxes from temperature anomalies measured at the surface by a thermal infrared camera. Once corrected from the atmospheric and surface effects, thermal infrared images are used to compute (1) the excess of radiative flux, (2) the excess of sensible flux and (3) the steam flux from the soil to the atmosphere. These calculations require measurements of atmospheric parameters (temperature, wind velocity and humidity) and estimations of surface parameters (roughness and emissivity). This method has been tested on a low-flux fumarolic zone of the Soufrière volcano (Guadeloupe Island -- Lesser Antilles), and compared to a flux estimation realized from the thermal gradient measurements into the soil. The two methods show a good agreement and a similar precision (267 ± 46 W/m2 for the thermal infrared method, and 275 ± 50 W/m2 for the vertical temperature gradient method), if surface roughness is well calibrated

    Bethe Ansatz for the Weakly Asymmetric Simple Exclusion Process and phase transition in the current distribution

    Full text link
    The probability distribution of the current in the asymmetric simple exclusion process is expected to undergo a phase transition in the regime of weak asymmetry of the jumping rates. This transition was first predicted by Bodineau and Derrida using a linear stability analysis of the hydrodynamical limit of the process and further arguments have been given by Mallick and Prolhac. However it has been impossible so far to study what happens after the transition. The present paper presents an analysis of the large deviation function of the current on both sides of the transition from a Bethe ansatz approach of the weak asymmetry regime of the exclusion process.Comment: accepted to J.Stat.Phys, 1 figure, 1 reference, 2 paragraphs adde

    Heat flux-based strategies for the thermal monitoring of sub-fumarolic areas: Examples from Vulcano and La Soufrière de Guadeloupe

    Get PDF
    Although it is relatively easy to set-up, the monitoring of soil temperature in sub-fumarolic areas is quite rarely used to monitor the evolution of hydrothermal systems. Indeed, measurements are highly sensitive to environmental conditions, in particular daily and seasonal variations of atmospheric temperatures and rainfalls, which can be only partially filtered by the established statistical analysis. In this paper, we develop two innovative processingmethods, both based on the computation of the heat flux in the soil. The upward heat flux method (UHF), designed for dry environments, consists in computing both the conductive and convective components of the heat flux between two thermocouples placed vertically. In the cases of wet environments, the excess of total heat method (ETH) allows the integration of rain gauges data in order to correct the heat balance fromthe superficial cooling effect of the precipitations. The performances of both processing techniques are faced to established methods (temperature gradient and coefficient of determination) on soil temperature time series from two test volcanoes. At La Fossa di Vulcano (Italy), the UHF method undoubtedly detects three thermal crises between 2009 and 2012, enabling to quantify not only the intensity but also the precise timing of the heat flux increase with respect to corresponding geochemical and seismic crises. At La Soufrière de Guadeloupe (French Lesser Antilles), despite large rainfalls dramatically influencing the thermal behavior of the soil, a constant geothermal heat flux is retrieved by the ETH method, confirming the absence of fumarolic crisis during the observation period (February–August 2010). Being quantitative, robust, and usable in almost any context of sub-fumarolic zones, our two heat flux-based methods increase the potential of soil temperature for the monitoring, but also the general interpretation of fumarolic crises together with geochemical and seismological observations. A spreadsheet allowing direct computation of UHF and ETH is provided as supplemental material.Published122-1342V. Struttura e sistema di alimentazione dei vulcaniJCR Journa

    Construction of a Coordinate Bethe Ansatz for the asymmetric simple exclusion process with open boundaries

    Full text link
    The asymmetric simple exclusion process with open boundaries, which is a very simple model of out-of-equilibrium statistical physics, is known to be integrable. In particular, its spectrum can be described in terms of Bethe roots. The large deviation function of the current can be obtained as well by diagonalizing a modified transition matrix, that is still integrable: the spectrum of this new matrix can be also described in terms of Bethe roots for special values of the parameters. However, due to the algebraic framework used to write the Bethe equations in the previous works, the nature of the excitations and the full structure of the eigenvectors were still unknown. This paper explains why the eigenvectors of the modified transition matrix are physically relevant, gives an explicit expression for the eigenvectors and applies it to the study of atypical currents. It also shows how the coordinate Bethe Ansatz developped for the excitations leads to a simple derivation of the Bethe equations and of the validity conditions of this Ansatz. All the results obtained by de Gier and Essler are recovered and the approach gives a physical interpretation of the exceptional points The overlap of this approach with other tools such as the matrix Ansatz is also discussed. The method that is presented here may be not specific to the asymmetric exclusion process and may be applied to other models with open boundaries to find similar exceptional points.Comment: references added, one new subsection and corrected typo

    Imagerie infrarouge thermique haute résolution : potentiels et limitations pour la géologie

    No full text
    Thermal infrared (7.5-14 μm) enables the measurement of temperature far fromgeological surfaces. Microbolometers devices are increasingly used in the field in order to mapthermal anomalies. However, phenomena such as atmospheric opacity and surface reflections disturb the electromagnetic signal. In addition, images have to be geometrically adjusted to fit with geographical models. A processing chain is here suggested in order to correct the radiometry and the geometry of images, and the uncertainties are computed. Then, its potential and limitations are considered, through a few examples. First, it has been used in order to detect the waterline evolution of a mud shore during a rising tide, which enables to reconstruct a digital elevation model. Then, a computer model has been developed to study the roughness effects on the surface temperature and on the thermal inertial calculation on Mars and on the (2867) Šteins asteroid. Finally the heat flux of a sub-fumarolian zone has been computed in La Soufrière volcano (Guadeloupe, Lesser Antilles).Thus, thermal infrared remote sensing is very useful in quantitatively mapping the temperatures anomalies with a high resolution. High frequency studies should enable the survey of geological phenomena.Le rayonnement infrarouge thermique (7.5-14 μm) permet de mesurer à distance la température de surfaces géologiques. Les capteurs de type “microbolomètre”, de bas prix et d’utilisation facile, sont de plus en plus utilisés pour cartographier sur le terrain des anomalies de température. Cependant, des phénomènes tels que l’opacité de l’atmosphère et les réflexions de la surface viennent modifier le signal. De plus, les images doivent être ajustées géométriquement pour être cartographiées. Après avoir proposé un protocole de correction géométrique et radiométrique des mesures, et quantifié les incertitudes résiduelles, quelques exemples sont étudiés pour définir les potentiels et les limites de l’infrarouge thermique en sciences de la Terre. Son potentiel pour la détection de la ligne de rivage a été utilisé lors d’une marée montante pour reconstituer le modèle numérique de terrain (MNT) d’une plage de l’Aber Benoît (Bretagne). D’autre part, un modèle informatique a été développé pour mesurer l’influence de la rugosité sur la température de la surface des planètes. Il a été appliqué au calcul de l’inertie thermique de Mars et de l’astéroïde (2867) Šteins. Enfin, les images infrarouges sont utilisées pour quantifier le flux de chaleur d’une zone sub-fumerollienne de la Soufrière. Ainsi, l’imagerie thermique infrarouge montre un fort potentiel, partiellement inexploité par les études actuelles, notamment pour la cartographie quantitative des contrastes de température à haute résolution. A haute fréquence, elle permet d’étudier la dynamique des phénomènes géologiques

    High resolution thermal infrared imaging : potential and limitations for earth sciences

    No full text
    Le rayonnement infrarouge thermique (7.5-14 μm) permet de mesurer à distance la température de surfaces géologiques. Les capteurs de type “microbolomètre”, de bas prix et d’utilisation facile, sont de plus en plus utilisés pour cartographier sur le terrain des anomalies de température. Cependant, des phénomènes tels que l’opacité de l’atmosphère et les réflexions de la surface viennent modifier le signal. De plus, les images doivent être ajustées géométriquement pour être cartographiées. Après avoir proposé un protocole de correction géométrique et radiométrique des mesures, et quantifié les incertitudes résiduelles, quelques exemples sont étudiés pour définir les potentiels et les limites de l’infrarouge thermique en sciences de la Terre. Son potentiel pour la détection de la ligne de rivage a été utilisé lors d’une marée montante pour reconstituer le modèle numérique de terrain (MNT) d’une plage de l’Aber Benoît (Bretagne). D’autre part, un modèle informatique a été développé pour mesurer l’influence de la rugosité sur la température de la surface des planètes. Il a été appliqué au calcul de l’inertie thermique de Mars et de l’astéroïde (2867) Šteins. Enfin, les images infrarouges sont utilisées pour quantifier le flux de chaleur d’une zone sub-fumerollienne de la Soufrière. Ainsi, l’imagerie thermique infrarouge montre un fort potentiel, partiellement inexploité par les études actuelles, notamment pour la cartographie quantitative des contrastes de température à haute résolution. A haute fréquence, elle permet d’étudier la dynamique des phénomènes géologiques.Thermal infrared (7.5-14 μm) enables the measurement of temperature far fromgeological surfaces. Microbolometers devices are increasingly used in the field in order to mapthermal anomalies. However, phenomena such as atmospheric opacity and surface reflections disturb the electromagnetic signal. In addition, images have to be geometrically adjusted to fit with geographical models. A processing chain is here suggested in order to correct the radiometry and the geometry of images, and the uncertainties are computed. Then, its potential and limitations are considered, through a few examples. First, it has been used in order to detect the waterline evolution of a mud shore during a rising tide, which enables to reconstruct a digital elevation model. Then, a computer model has been developed to study the roughness effects on the surface temperature and on the thermal inertial calculation on Mars and on the (2867) Šteins asteroid. Finally the heat flux of a sub-fumarolian zone has been computed in La Soufrière volcano (Guadeloupe, Lesser Antilles).Thus, thermal infrared remote sensing is very useful in quantitatively mapping the temperatures anomalies with a high resolution. High frequency studies should enable the survey of geological phenomena

    Integrating puffing and explosions in a general scheme for Strombolian‐style activity

    No full text
    AbstractStrombolian eruptions are among the most common subaerial styles of explosive volcanism worldwide. Distinctive features of each volcano lead to a correspondingly wide range of variations of magnitude and erupted products, but most papers focus on a single type of event at a single volcano. Here, in order to emphasize the common features underlying this diversity of styles, we scrutinize a database from 35 different erupting vents, including 21 thermal infrared videos from Stromboli (Italy), Etna (Italy), Yasur (Vanuatu), and Batu Tara (Indonesia), from puffing, through rapid explosions to normal explosions, with variable ejection parameters and relative abundance of gas, ash, and bombs. Using field observations and high‐speed thermal infrared videos processed by a new algorithm, we identify the distinguishing characteristics of each type of activity and how they may relate and interact. In particular, we record that ash‐poor normal explosions may be preceded and followed by the onset or the increase of the puffing activity, while ash‐rich explosions are emergent, i.e., with inflation of the free surface followed directly by emission of increasingly large gas pockets. Overall, we see that all Strombolian activities form a continuum arising from a common mechanism and are modulated by the combination of two well‐established controls: (1) the length of the bursting gas pocket with respect to the vent diameter and (2) the presence and thickness of a high‐viscosity layer in the uppermost part of the volcanic conduit

    Pyroclast Tracking Velocimetry illuminates bomb ejection and explosion dynamics at Stromboli (Italy) and Yasur (Vanuatu) volcanoes

    No full text
    A new image processing technique - Pyroclast Tracking Velocimetry - was used to analyze a set of 30 high-speed videos of Strombolian explosions from different vents at Stromboli (Italy) and Yasur (Vanuatu) volcanoes. The studied explosions invariably appear to result from the concatenation of up to a hundred individual pyroclast ejection pulses. All these pulses share a common evolution over time, including (1) a non-linear decrease of the pyroclast ejection velocity, (2) an increasing spread of ejection angle, and (3) an increasing size of the ejected pyroclasts. These features reflect the dynamic burst of short-lived gas pockets, in which the rupture area enlarges while pressure differential decreases. We estimated depth of pyroclast release to be approximately 1 and 8 m below the surface at Stromboli and Yasur, respectively. In addition, explosions featuring more frequent pulses also have higher average ejection velocities and larger total masses of pyroclasts. These explosions release a larger overall amount of energy stored in the pressurized gas by a combination of more frequent and stronger ejection pulses. In this context, the associated kinetic energy per explosion, ranging 10 3-109 J appears to be a good proxy for the explosion magnitude. Differences in the pulse-defining parameters among the different vents suggest that this general process is modulated by geometrical factors in the shallow conduit, as well as magma-specific rheology. Indeed, the more viscous melt of Yasur, compared to Stromboli, is associated with larger vents producing fewer pulses but larger pyroclasts. Key Points We analyze high-speed videos of 30 explosions at Yasur and Stromboli volcanoes Gas pressure is released through well-defined ejection pulses in all explosions Stronger explosions generate more frequent pulses with higher kinetic energy © 2014. American Geophysical Union. All Rights Reserved
    corecore