653 research outputs found

    Estimating oceanic primary production using vertical irradiance and chlorophyll profiles from ocean gliders in the North Atlantic

    Get PDF
    An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope (13C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements

    Child-orientated environmental education influences adult knowledge and household behaviour

    Get PDF
    Environmental education is frequently undertaken as a conservation intervention designed to change the attitudes and behaviour of recipients. Much conservation education is aimed at children, with the rationale that children influence the attitudes of their parents, who will consequently change their behaviour. Empirical evidence to substantiate this suggestion is very limited, however. For the first time, we use a controlled trial to assess the influence of wetland-related environmental education on the knowledge of children and their parents and household behaviour. We demonstrate adults exhibiting greater knowledge of wetlands and improved reported household water management behaviour when their child has received wetland-based education at Seychelles wildlife clubs. We distinguish between 'folk' knowledge of wetland environments and knowledge obtained from formal education, with intergenerational transmission of each depending on different factors. Our study provides the first strong support for the suggestion that environmental education can be transferred between generations and indirectly induce targeted behavioural changes

    Open-ocean submesoscale motions: a full seasonal cycle of mixed layer instabilities from gliders

    Get PDF
    The importance of submesoscale instabilities, particularly mixed-layer baroclinic instability and symmetric instability, on upper ocean mixing and energetics is well documented in regions of strong, persistent fronts such as the Kuroshio and the Gulf Stream. Less attention has been devoted to studying submesoscale flows in the open ocean, far from long-term mean geostrophic fronts, characteristic of a large proportion of the global ocean. We present a year-long, submesoscale-resolving time series of near-surface buoyancy gradients, potential vorticity and instability characteristics, collected by ocean gliders, that provides insight into open-ocean submesoscale dynamics over a full annual cycle. The gliders continuously sampled a 225 km2 region in the subtropical northeast Atlantic, measuring temperature, salinity and pressure along 292 short (\~{}20 km) hydrographic sections.Glider observations show a seasonal cycle in near-surface stratification. Throughout the fall (September through November), the mixed layer deepens, predominantly through gravitational instability, indicating that surface cooling dominates submesoscale restratification processes. During winter (December through March), mixed layer depths are more variable, and estimates of the balanced Richardson number, which measures the relative importance of lateral and vertical buoyancy gradients, depict conditions favorable to symmetric instability. The importance of mixed layer instabilities on the restratification of the mixed layer, as compared with surface heating and cooling, shows that submesoscale processes can reverse the sign of an equivalent heat flux up to 25{\%} of the time during winter. These results demonstrate that the open-ocean mixed layer hosts various forced and unforced instabilities, which become more prevalent during winter, and emphasize that accurate parameterizations of submesoscale processes are needed throughout the ocean

    Radiation Hardness Studies in a CCD with High-Speed Column Parallel Readout

    Full text link
    Charge Coupled Devices (CCDs) have been successfully used in several high energy physics experiments over the past two decades. Their high spatial resolution and thin sensitive layers make them an excellent tool for studying short-lived particles. The Linear Collider Flavour Identification (LCFI) collaboration is developing Column-Parallel CCDs (CPCCDs) for the vertex detector of the International Linear Collider (ILC). The CPCCDs can be read out many times faster than standard CCDs, significantly increasing their operating speed. The results of detailed simulations of the charge transfer inefficiency (CTI) of a prototype CPCCD are reported and studies of the influence of gate voltage on the CTI described. The effects of bulk radiation damage on the CTI of a CPCCD are studied by simulating the effects of two electron trap levels, 0.17 and 0.44 eV, at different concentrations and operating temperatures. The dependence of the CTI on different occupancy levels (percentage of hit pixels) and readout frequencies is also studied. The optimal operating temperature for the CPCCD, where the effects of the charge trapping are at a minimum, is found to be about 230 K for the range of readout speeds proposed for the ILC. The results of the full simulation have been compared with a simple analytic model.Comment: 3 pages, 6 figures; presented at IEEE'07, ALCPG'07, ICATPP'0

    High Resolution Hybrid Pixel Sensors for the e+e- TESLA Linear Collider Vertex Tracker

    Get PDF
    In order to fully exploit the physics potential of a future high energy e+e- linear collider, a Vertex Tracker, providing high resolution track reconstruction, is required. Hybrid Silicon pixel sensors are an attractive option, for the sensor technology, due to their read-out speed and radiation hardness, favoured in the high rate environment of the TESLA e+e- linear collider design but have been so far limited by the achievable single point space resolution. In this paper, a conceptual design of the TESLA Vertex Tracker, based on a novel layout of hybrid pixel sensors with interleaved cells to improve their spatial resolution, is presented.Comment: 12 pages, 5 figures, to appear in the Proceedings of the Vertex99 Workshop, Texel (The Netherlands), June 199

    Triple product correlations in top squark decays

    Full text link
    We propose several T-odd asymmetries in the decay chains of the top squarks t~mtχ~k0\tilde t_m \to t \tilde \chi^0_k and tbW+blνt\to bW^+\to bl\nu and χ~k0l±l~nl±lχ~10\tilde\chi^0_k \to l^\pm\tilde l_n^\mp \to l^\pm l^\mp\tilde\chi^0_1, for l=e,μ,τl =e,\mu,\tau. We calculate the asymmetries within the Minimal Supersymmetric Standard Model with complex parameters M1M_1, μ\mu and AtA_t. We give the analytic formulae for the decay distributions. We present numerical results for the asymmetries and estimate the event rates necessary to observe them. The largest T-odd asymmetry can be as large as 40%.Comment: 26 pages, 5 figures; misprints corrected; reference adde

    Architecture and regulation of filamentous human cystathionine beta-synthase

    Get PDF
    \ua9 The Author(s) 2024. Cystathionine beta-synthase (CBS) is an essential metabolic enzyme across all domains of life for the production of glutathione, cysteine, and hydrogen sulfide. Appended to the conserved catalytic domain of human CBS is a regulatory domain that modulates activity by S-adenosyl-L-methionine (SAM) and promotes oligomerisation. Here we show using cryo-electron microscopy that full-length human CBS in the basal and SAM-bound activated states polymerises as filaments mediated by a conserved regulatory domain loop. In the basal state, CBS regulatory domains sterically block the catalytic domain active site, resulting in a low-activity filament with three CBS dimers per turn. This steric block is removed when in the activated state, one SAM molecule binds to the regulatory domain, forming a high-activity filament with two CBS dimers per turn. These large conformational changes result in a central filament of SAM-stabilised regulatory domains at the core, decorated with highly flexible catalytic domains. Polymerisation stabilises CBS and reduces thermal denaturation. In PC-3 cells, we observed nutrient-responsive CBS filamentation that disassembles when methionine is depleted and reversed in the presence of SAM. Together our findings extend our understanding of CBS enzyme regulation, and open new avenues for investigating the pathogenic mechanism and therapeutic opportunities for CBS-associated disorders

    On the K^+D Interaction at Low Energies

    Full text link
    The Kd reactions are considered in the impulse approximation with NN final-state interactions (NN FSI) taken into account. The realistic parameters for the KN phase shifts are used. The "quasi-elastic" energy region, in which the elementary KN interaction is predominantly elastic, is considered. The theoretical predictions are compared with the data on the K^+d->K^+pn, K^+d->K^0pp, K^+d->K^+d and K^+d total cross sections. The NN FSI effect in the reaction K^+d->K^+pn has been found to be large. The predictions for the Kd cross sections are also given for slow kaons, produced from phi(1020) decays, as the functions of the isoscalar KN scattering length a_0. These predictions can be used to extract the value of a_0 from the data.Comment: 22 pages, 5 figure
    corecore