61 research outputs found

    MetaboCraft: building a Minecraft plugin for metabolomics

    Get PDF
    Motivation: The rapid advances in metabolomics pose a significant challenge in presentation and interpretation of results. Development of new, engaging visual aids is crucial to advancing our understanding of new findings. Results: We have developed MetaboCraft, a Minecraft plugin which creates immersive visualisations of metabolic networks and pathways in a 3-D environment and allows the results of user experiments to be viewed in this context, presenting a novel approach to exploring the metabolome

    GraphOmics: an interactive platform to explore and integrate multi-omics data

    Get PDF
    Background: An increasing number of studies now produce multiple omics measurements that require using sophisticated computational methods for analysis. While each omics data can be examined separately, jointly integrating multiple omics data allows for deeper understanding and insights to be gained from the study. In particular, data integration can be performed horizontally, where biological entities from multiple omics measurements are mapped to common reactions and pathways. However, data integration remains a challenge due to the complexity of the data and the difficulty in interpreting analysis results. Results: Here we present GraphOmics, a user-friendly platform to explore and integrate multiple omics datasets and support hypothesis generation. Users can upload transcriptomics, proteomics and metabolomics data to GraphOmics. Relevant entities are connected based on their biochemical relationships, and mapped to reactions and pathways from Reactome. From the Data Browser in GraphOmics, mapped entities and pathways can be ranked, sorted and filtered according to their statistical significance (p values) and fold changes. Context-sensitive panels provide information on the currently selected entities, while interactive heatmaps and clustering functionalities are also available. As a case study, we demonstrated how GraphOmics was used to interactively explore multi-omics data and support hypothesis generation using two complex datasets from existing Zebrafish regeneration and Covid-19 human studies. Conclusions: GraphOmics is fully open-sourced and freely accessible from https://graphomics.glasgowcompbio.org/. It can be used to integrate multiple omics data horizontally by mapping entities across omics to reactions and pathways. Our demonstration showed that by using interactive explorations from GraphOmics, interesting insights and biological hypotheses could be rapidly revealed

    MetAssign: probabilistic annotation of metabolites from LC–MS data using a Bayesian clustering approach

    Get PDF
    Motivation: The use of liquid chromatography coupled to mass spectrometry (LC–MS) has enabled the high-throughput profiling of the metabolite composition of biological samples. However, the large amount of data obtained can be difficult to analyse and often requires computational processing to understand which metabolites are present in a sample. This paper looks at the dual problem of annotating peaks in a sample with a metabolite, together with putatively annotating whether a metabolite is present in the sample. The starting point of the approach is a Bayesian clustering of peaks into groups, each corresponding to putative adducts and isotopes of a single metabolite.<p></p> Results: The Bayesian modelling introduced here combines information from the mass-to-charge ratio, retention time and intensity of each peak, together with a model of the inter-peak dependency structure, to increase the accuracy of peak annotation. The results inherently contain a quantitative estimate of confidence in the peak annotations and allow an accurate trade off between precision and recall. Extensive validation experiments using authentic chemical standards show that this system is able to produce more accurate putative identifications than other state-of-the-art systems, while at the same time giving a probabilistic measure of confidence in the annotations.<p></p> Availability: The software has been implemented as part of the mzMatch metabolomics analysis pipeline, which is available for download at http://mzmatch.sourceforge.net/

    Ms2lda.org: web-based topic modelling for substructure discovery in mass spectrometry

    Get PDF
    Motivation: We recently published MS2LDA, a method for the decomposition of sets of molecular fragment data derived from large metabolomics experiments. To make the method more widely available to the community, here we present ms2lda.org, a web application that allows users to upload their data, run MS2LDA analyses and explore the results through interactive visualisations. Results: Ms2lda.org takes tandem mass spectrometry data in many standard formats and allows the user to infer the sets of fragment and neutral loss features that co-occur together (Mass2Motifs). As an alternative workflow, the user can also decompose a dataset onto predefined Mass2Motifs. This is accomplished through the web interface or programmatically from our web service

    Metabolomics Identifies multiple candidate biomarkers to diagnose and stage human African trypanosomiasis

    Get PDF
    Treatment for human African trypanosomiasis is dependent on the species of trypanosome causing the disease and the stage of the disease (stage 1 defined by parasites being present in blood and lymphatics whilst for stage 2, parasites are found beyond the blood-brain barrier in the cerebrospinal fluid (CSF)). Currently, staging relies upon detecting the very low number of parasites or elevated white blood cell numbers in CSF. Improved staging is desirable, as is the elimination of the need for lumbar puncture. Here we use metabolomics to probe samples of CSF, plasma and urine from 40 Angolan patients infected with Trypanosoma brucei gambiense, at different disease stages. Urine samples provided no robust markers indicative of infection or stage of infection due to inherent variability in urine concentrations. Biomarkers in CSF were able to distinguish patients at stage 1 or advanced stage 2 with absolute specificity. Eleven metabolites clearly distinguished the stage in most patients and two of these (neopterin and 5-hydroxytryptophan) showed 100% specificity and sensitivity between our stage 1 and advanced stage 2 samples. Neopterin is an inflammatory biomarker previously shown in CSF of stage 2 but not stage 1 patients. 5-hydroxytryptophan is an important metabolite in the serotonin synthetic pathway, the key pathway in determining somnolence, thus offering a possible link to the eponymous symptoms of “sleeping sickness”. Plasma also yielded several biomarkers clearly indicative of the presence (87% sensitivity and 95% specificity) and stage of disease (92% sensitivity and 81% specificity). A logistic regression model including these metabolites showed clear separation of patients being either at stage 1 or advanced stage 2 or indeed diseased (both stages) versus control

    Changing environments and genetic variation: natural variation in inbreeding does not compromise short-term physiological responses

    Get PDF
    Selfing plant lineages are surprisingly widespread and successful in a broad range of environments, despite showing reduced genetic diversity, which is predicted to reduce their long-term evolutionary potential. However, appropriate short-term plastic responses to new environmental conditions might not require high levels of standing genetic variation. In this study, we tested whether mating system variation among populations, and associated changes in genetic variability, affected short-term responses to environmental challenges. We compared relative fitness and metabolome profiles of naturally outbreeding (genetically diverse) and inbreeding (genetically depauperate) populations of a perennial plant, Arabidopsis lyrata, under constant growth chamber conditions and an outdoor common garden environment outside its native range. We found no effect of inbreeding on survival, flowering phenology or short-term physiological responses. Specifically, naturally occurring inbreeding had no significant effects on the plasticity of metabolome profiles, using either multivariate approaches or analysis of variation in individual metabolites, with inbreeding populations showing similar physiological responses to outbreeding populations over time in both growing environments. We conclude that low genetic diversity in naturally inbred populations may not always compromise fitness or short-term physiological capacity to respond to environmental change, which could help to explain the global success of selfing mating strategies

    The Renilla luciferase gene as a reference gene for normalization of gene expression in transiently transfected cells

    Get PDF
    Background: The importance of appropriate normalization controls in quantitative real-time polymerase chain reaction (qPCR) experiments has become more apparent as the number of biological studies using this methodology has increased. In developing a system to study gene expression from transiently transfected plasmids, it became clear that normalization using chromosomally encoded genes is not ideal, at it does not take into account the transfection efficiency and the significantly lower expression levels of the plasmids. We have developed and validated a normalization method for qPCR using a co-transfected plasmid. Results: The best chromosomal gene for normalization in the presence of the transcriptional activators used in this study, cadmium, dexamethasone, forskolin and phorbol-12-myristate 13-acetate was first identified. qPCR data was analyzed using geNorm, Normfinder and BestKeeper. Each software application was found to rank the normalization controls differently with no clear correlation. Including a co-transfected plasmid encoding the Renilla luciferase gene (Rluc) in this analysis showed that its calculated stability was not as good as the optimised chromosomal genes, most likely as a result of the lower expression levels and transfection variability. Finally, we validated these analyses by testing two chromosomal genes (B2M and ActB) and a co-transfected gene (Rluc) under biological conditions. When analyzing co-transfected plasmids, Rluc normalization gave the smallest errors compared to the chromosomal reference genes. Conclusions: Our data demonstrates that transfected Rluc is the most appropriate normalization reference gene for transient transfection qPCR analysis; it significantly reduces the standard deviation within biological experiments as it takes into account the transfection efficiencies and has easily controllable expression levels. This improves reproducibility, data validity and most importantly, enables accurate interpretation of qPCR data

    Changing environments and genetic variation: natural variation in inbreeding does not compromise short-term physiological responses

    Get PDF
    Selfing plant lineages are surprisingly widespread and successful in a broad range of environments, despite showing reduced genetic diversity, which is predicted to reduce their long-term evolutionary potential. However, appropriate short-term plastic responses to new environmental conditions might not require high levels of standing genetic variation. In this study, we tested whether mating system variation among populations, and associated changes in genetic variability, affected short-term responses to environmental challenges. We compared relative fitness and metabolome profiles of naturally outbreeding (genetically diverse) and inbreeding (genetically depauperate) populations of a perennial plant, Arabidopsis lyrata, under constant growth chamber conditions and an outdoor common garden environment outside its native range. We found no effect of inbreeding on survival, flowering phenology or short-term physiological responses. Specifically, naturally occurring inbreeding had no significant effects on the plasticity of metabolome profiles, using either multivariate approaches or analysis of variation in individual metabolites, with inbreeding populations showing similar physiological responses to outbreeding populations over time in both growing environments. We conclude that low genetic diversity in naturally inbred populations may not always compromise fitness or short-term physiological capacity to respond to environmental change, which could help to explain the global success of selfing mating strategies

    R package for statistical inference in dynamical systems using kernel based gradient matching: KGode

    Get PDF
    Many processes in science and engineering can be described by dynamical systems based on nonlinear ordinary differential equations (ODEs). Often ODE parameters are unknown and not directly measurable. Since nonlinear ODEs typically have no closed form solution, standard iterative inference procedures require a computationally expensive numerical integration of the ODEs every time the parameters are adapted, which in practice restricts statistical inference to rather small systems. To overcome this computational bottleneck, approximate methods based on gradient matching have recently gained much attention. The idea is to circumvent the numerical integration step by using a surrogate cost function that quantifies the discrepancy between the derivatives obtained from a smooth interpolant to the data and the derivatives predicted by the ODEs. The present article describes the software implementation of a recent method that is based on the framework of reproducing kernel Hilbert spaces. We provide an overview of the methods available, illustrate them on a series of widely used benchmark problems, and discuss the accuracy–efficiency trade-off of various regularization methods

    PiMP my metabolome:An integrated, web-based tool for LC-MS metabolomics data

    Get PDF
    Summary: The Polyomics integrated Metabolomics Pipeline (PiMP) fulfils an unmet need in metabolomics data analysis. PiMP offers automated and user-friendly analysis from mass spectrometry data acquisition to biological interpretation. Our key innovations are the Summary Page, which provides a simple overview of the experiment in the format of a scientific paper, containing the key findings of the experiment along with associated metadata; and the Metabolite Page, which provides a list of each metabolite accompanied by ‘evidence cards’, which provide a variety of criteria behind metabolite annotation including peak shapes, intensities in different sample groups and database information. Availability: PiMP is available at http://polyomics.mvls.gla.ac.uk, and access is freely available on request. 50 GB of space is allocated for data storage, with unrestricted number of samples and analyses per user. Source code is available at https://github.com/RonanDaly/pimp and licensed under the GPL
    corecore