
Computational Statistics (2021) 36:715–747
https://doi.org/10.1007/s00180-020-01014-x

ORIG INAL PAPER

R package for statistical inference in dynamical systems
using kernel based gradient matching: KGode

Mu Niu1 · Joe Wandy2 · Rónán Daly2 · Simon Rogers3 · Dirk Husmeier1

Received: 25 October 2019 / Accepted: 9 July 2020 / Published online: 23 July 2020
© The Author(s) 2020

Abstract
Many processes in science and engineering can be described by dynamical systems
based on nonlinear ordinary differential equations (ODEs). Often ODE parameters
are unknown and not directly measurable. Since nonlinear ODEs typically have no
closed form solution, standard iterative inference procedures require a computationally
expensive numerical integration of the ODEs every time the parameters are adapted,
which in practice restricts statistical inference to rather small systems. To overcome
this computational bottleneck, approximate methods based on gradient matching have
recently gained much attention. The idea is to circumvent the numerical integration
step by using a surrogate cost function that quantifies the discrepancy between the
derivatives obtained from a smooth interpolant to the data and the derivatives predicted
by the ODEs. The present article describes the software implementation of a recent
method that is based on the framework of reproducing kernel Hilbert spaces. We
provide an overview of the methods available, illustrate them on a series of widely
used benchmark problems, and discuss the accuracy–efficiency trade-off of various
regularization methods.

B Mu Niu
mu.niu@glasgow.ac.uk

Joe Wandy
joe.wandy@glasgow.ac.uk

Rónán Daly
ronan.daly@glasgow.ac.uk

Simon Rogers
Simon.Rogers@glasgow.ac.uk

Dirk Husmeier
Dirk.Husmeier@glasgow.ac.uk

1 School of Mathematics and Statistics, University of Glasgow, Glasgow, UK

2 Glasgow Polyomics, University of Glasgow, Glasgow, UK

3 School of Computing Science, University of Glasgow, Glasgow, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-020-01014-x&domain=pdf
http://orcid.org/0000-0002-3068-5501

716 M. Niu et al.

Keywords Ordinary differential equations · Gradient matching · Reproducing kernel
Hilbert space · Regularization · Time warping · Residual bootstrap

1 Introduction

An increasing number of traditionally qualitative scientific disciplines are becom-
ing quantitative, including systems biology (e.g. Pokhilko et al. 2013), ecology (e.g.
Ovaskainen et al. 2016), personalised medicine (e.g. Gao et al. 2017) and the social
sciences (e.g. Thai et al. 2017), with models and hypotheses formulated in terms
of systems of coupled ordinary differential equations (ODEs). The equations typi-
cally depend on parameters that cannot be directly measured, but rather have to be
inferred on the basis of observations or measurements at the systems level. This places
formidable challenges on statistical inference. Since non-linear ODEs typically do not
have closed-form solutions, a numerical integration is required every time the model
parameters are changed. This would not be a problem if a closed-form solution of
the likelihood equation were available. However, likelihood landscapes of complex
non-linear systems are typically multimodal, which calls for an iterative global opti-
mization scheme (in a maximum likelihood context) or a Markov chain Monte Carlo
sampling scheme (in a Bayesian context). Since each of these individual adaptation
steps is now associated with the computational costs of a numerical integration, the
overall computational complexity can be become excessive.

A way to circumvent the high computational complexity of explicitly solving the
ODEs is the method of gradient matching; see the Introduction section of Niu et al.
(2017) for a comprehensive review. The idea is to interpolate the time series data,
then optimize the ODE parameters so as to minimize some metric measuring the
difference between the slopes of the tangents to the interpolants, and the parameter-
dependent time derivatives from the ODEs. In this way, the ODEs never have to be
solved explicitly, and the typically unknown initial conditions are effectively profiled
over. A disadvantage of this two-step scheme is that the results of parameter inference
may critically hinge on the quality of the initial interpolant, which is particularly a
problem if the interpolant is subject to overfitting. A way to address this issue is to
regularize the interpolants by the ODEs themselves, as first suggested by Ramsay et al.
(2007).

Various methods have subsequently been proposed in the statistics and machine
learning literature, basedonP-splines (Liang andWu2008), parallel tempering (Camp-
bell and Steele 2012), Gaussian processes (Dondelinger et al. 2013; Calderhead et al.
2009; Barber andWang 2014; Macdonald et al. 2015), and reproducing kernel Hilbert
spaces (RKHS, see González et al. 2013, 2014). The latter approach has been imple-
mented in software by Vujacic et al. (2015) in the R package odest. Whilst being
computationally efficient, a shortcoming of this method is that it has been designed
for linear ODEs, and requires a series of heuristic approximations for extension to non-
linear ODEs. This limitation has been overcome in the more recent methods of Niu
et al. (2016) and Niu et al. (2017). Pfister et al. (2018) developed the episode R pack-
age that implements an adaptive integral-matching algorithm for learning polynomial
or rational ODEs with a sparse network structure. King et al. (2015) developed the

123

R package for statistical inference in dynamical systems. . . 717

pomp R package for statistical inference in partially observed and stochastic systems
for which the likelihood is intractable.

The present article describes a recently developed software package for inference
in systems described by differential equations, which can have an arbitrarily non-
linear structure (addressing the limitation of odest), are not required to be sparse (as
opposed to episode), and not of the form of partially observed Markov processes (as
opposed to pomp). It implements the gradient matching method proposed in Niu et al.
(2016, 2017). This method is based on the framework of reproducing kernel Hilbert
spaces (RKHS), which combines nonlinear-model flexibility and robust regularization
to prevent overfitting. Three standard regularization methods are included: a standard
general-purpose approach from the theory of RKHS, an approach based on nonlinear
time-warping, and a method that specifically includes the ODEs in the regularization
framework. All the methods are illustrated on a set of sparse and noisy time series
generated from standard benchmark ODE models, and their pros and cons in terms
of an accuracy versus efficiency trade-off are discussed. The software package, called
KGode, is available from the comprehensive R archive network (CRAN).

2 Method

2.1 Dynamical systems

Consider a dynamical system comprising r interacting states xs, 1 ≤ s ≤ r , the time
evolution of which is governed by coupled non-linear ordinary differential equations
(ODEs):

ẋ = dx
dt

= f (x(t), θ)′ , (1)

where x = (x1, . . . , xr)′ is a time-dependent vector of state variables, and θ a vector of
unknown parameters.Without loss of generalitywewill assumefixed initial conditions
x0. If these are unknown they can be integrated into the set of parameters θ .We assume
that we observe time series of n noisy observations ys = (ys1, . . . , ysn)′ for each of the
states xs = (xs1, . . . , xsn)′, subject to iid additive Gaussian noise εk ∼ N (0, σ 2 I):

ys = xs + εs (2)

and the objective of inference is to learn θ from the noisy measurements y.

2.2 Standard gradient matching

LetH be a Hilbert space of real functions g defined on an index set D ⊂ R
m . ThenH

is called a Reproducing Kernel Hilbert Space (RKHS) endowed with an inner product
< ., . > if and only if there exists a function k(·, ·) : D × D → R such that for all
t ∈ D and all g ∈ H the inner product < g(·), k(t, ·) > is equal to g(t) and the
kernel function k(t, ·) is in H (Aronszajn 1950). When adopting an RKHS approach

123

718 M. Niu et al.

for function estimation, functions are expressed as a linear combination of kernel
functions evaluated at the data points

g(t) =
n∑

i=1

bi k(t, ti) (3)

with bi ∈ R and ti ∈ D. Many standard kernel functions exist including the squared
exponential or radial basis function (RBF) kernel, the spline kernel, and themulti-layer
perceptron (MLP) kernel (see e.g. Bishop 2006, chapter 6). The kernel parameters can
be denoted as ϕ.

In this framework, the unknown state variables in Eq. (1) for the sth component of
the dynamical system at time t can be modelled as

gs(t; bs) =
n∑

i=1

bsi k(t, ti) (4)

with derivatives

ġs(t; bs) = ∂gs(t; bs)
∂t

=
n∑

i=1

bsi
∂k(t, ti)

∂t
=

n∑

i=1

bsi k̇(t, ti), (5)

where bs is the vector of kernel regression coefficients bsi . We denote by B the matrix
of all regression parameter vectors, for all ODE state variables: B = (b1, . . . , br).
Following standard kernel ridge regression, smooth interpolants gs(t) are obtained by
minimizing the following regularized loss function:

L(bs,ϕs; λs) =
n∑

i=1

(
gs(ti ; bs) − ys(ti)

)2 + λs ||qs ||2 (6)

where ϕs denotes the vector of hyperparameters of the kernel function (e.g. the length
scale(s) of anRBFkernel),1 λs ≥ 0 is a regularization parameter, and the regularization
term ||qs ||2 is the squared norm ofHs :

||qs ||2 = bTs K sbs (7)

where K s is the Gram matrix,

K s =
⎛

⎝
k(t1, t1) . . . k(t1, tn)

.

k(tn, t1) . . . k(tn, tn)

⎞

⎠ (8)

1 The dependency on ϕs is via ks (which has not been made explicit in the notation).

123

R package for statistical inference in dynamical systems. . . 719

The minimization of L(bs,ϕs; λs) with respect to bs for given ϕs and λs is a convex
optimization problem with solution

bs = (K s + λs I)−1 ys . (9)

Given λs , the kernel hyper-parameters ϕs are optimized independently by minimizing
the loss function in Eq. (6) with a standard optimization routine, such as trust region
or quasi-Newton. The regularization parameters λs are estimated using 10-fold cross
validation.

Finally, the ODE parameters θ can be estimated by minimizing the difference
between ġ(ti) and the gradient predicted from the ODEs, f (g(ti), θ), using the fol-
lowing loss function:

L(θ) =
r∑

s=1

n∑

i=1

[
ġs(ti , bs) − fs(g(ti), θ)

]2
(10)

There could be multiple local minima in the optimization of Eq. (10). A standard
way to address this is to repeat the optimization from different initializations, either
randomly chosen or (better) from a space-filling design in parameter space, and then
to keep the best value. However, the combination of results from different local optima
can also be used for uncertainty quantification. Pearce et al. (2020) show that under
certain regularity conditions, the parameter distribution obtained from different local
optima is a good approximation of the Bayesian posterior distribution. Repeating our
optimization procedures from different intializations is a computationally cheaper
alternative to Markov chain Monte Carlo simulations for uncertainty quantification,
and an example of the distribution one can obtain in this way is provided in Fig. 7. The
standard gradient matching (RKG) method is implemented in KGode in the rkg(.)
function, which is described in Algorithm 1.

Algorithm 1 : Standard gradient matching: rkg(odem,y_no,ktype)
Input: ode class objects, kernel type and noisy observations.
1: for s = 1 : N_s do 	 N_s is the number of states in the ODEs
2: Do RKHS regression for all ODE states, model ODE state xs = gs (t; bs) as in Eqs. (3) and (4) by

defining an rkhs class object.
3: Find the kernel hyperparameters ϕs by optimizing the objective function in Eq. (6).
4: Optimize the regularization parameter λs by cross-validation.
5: Obtain the derivatives of the ODE states from the RKHS interpolants: ġs (t; bs) =∑n

i=1 bsi k̇(t, ti)

6: end for
7: Estimate the ODE parameters by gradient matching via optimizing the function in Eq. (10).
Output: A list of rkhs class objects containing the interpolation results for each ODE state and an updated
ode class object containing the ODE parameter estimates.

123

720 M. Niu et al.

2.3 Warped gradient matching

The standard gradientmatching approach critically depends on the ability of theRKHS
interpolant, defined by the linear combination of kernels, to adequately represent the
solution of the ODE system. Small ‘wiggles’, which may be hardly discernible at the
level of the interpolant itself, can have dramatic effects at the level of the derivatives,
which determine the parameter estimation. For noisy data, an adequate smoothing
scheme is essential. However, any smoothing scheme is based on intrinsic functional
length scales and these length scales may vary in time. Consider, for instance, esti-
mating an oscillating signal with varying frequency. If the length scale is tuned to the
high-frequency domain, overfittingwill typically result in the low frequency domain; if
it is tuned to the low frequency domain, over-smoothing will affect the high frequency
domain. In either case, the estimation of the derivatives will be poor, hampering ODE
parameter estimation.

To overcome the difficulties imposed by variations in intrinsic functional length
scales on smooth function interpolation, we introduce a two-layer approach, illustrated
in Fig. 1. The objective of the first layer is to transform, for each of the variables s of
the dynamical system, time t via a bijection t̃ = ws(t) such that in warped time t̃ , the
unknown solutions xs of the dynamical system show less variation in their intrinsic
length scales. More specifically, we target oscillating functions and aim to transform
them into a regular sinusoid by exploiting the fact that a sinusoid is closed under
second-order differentiation (subject to rescaling). The basic idea is that a regular
sinusoid is easy to learn, whereas a quasi-periodic signal with varying frequencies is
not. The objective, hence, is to find a warping of the time axis that counter-acts the
inhomogeneity in the period. We define the transformation of time as

t̃ = ws(t, bw, lw) =
n∑

j=1

exp (bw
j)S(t − t j , l

w)

S(z, lw) = 1

1 + exp(−lwz)
(11)

where the strict monotonicity of S(.) and the non-negativity of exp(.) guarantee
bijectivity. The sigmoidal nature of the transfer function allows for compression and
expansion of the time axis, with flat regions corresponding to the former, and steep
regions corresponding to the latter. lw is the hyper parameter of the basis function of
the warping function. In the original time domain, the sth variable of the dynamical
system, xs(t), is approximated by the smooth interpolant gs(t). This function is now
transformed, by virtue of the bijection (11), into qs(t̃), where

gs(t) = qs ◦ ws(t) = qs(t̃) (12)

and ws(t) is shorthand notation for the bijection defined in (11).

Step 1: Initialization We initialize the system with standard kernel ridge regression,
i.e. by solving Eqs. (7)–(9) resulting in smooth interpolants gs(t) in the original time

123

R package for statistical inference in dynamical systems. . . 721

Fig. 1 Graphical representation of the proposed method. A dynamical system, depending on the kinetic
parameters θ (top left), has solutions subject to varying intrinsic length scales (top right). To improve
inference, time t is warped into t̃ via a bijection (centre) with the objective to homogenize the intrinsic length
scales (bottom right). This is achieved by minimizing an objective function that encourages functional
invariance with respect to second-order differentiation (far right). The dynamical system in the warped
domain can easily be obtained by application of the chain rule from standard calculus (bottom left). The
kinetic parameters θ are then obtained byminimizing a secondobjective function based ongradientmatching
(far left). To avoid obfuscation, the figure does not specifically represent the distinction between the unknown
true functions, x(t), and the interpolants used for their approximation, g(t) and q(t̃). A mathematically
equivalent andmore convenient way is to define the gradient matching in the original domain, after mapping
the interpolants back into the original time domain. This has also not been shown, again to avoid obfuscation

domain t . We then initialize t̃ = t and gs(t) = qs(t̃), for each of the variables s of the
dynamical system in turn.2 The transformation of time is defined in Eqs. (11)–(12).
The bijection between the original time domain t ∈ [T0, T1] and the warped time
domain t̃ ∈ [T̃0, T̃1] is obtained by minimizing the following objective function with
respect to the parameters lw, bw, T̃0 and T̃1:

Lw(lw, bw, T̃0, T̃1) =
∫ (

q̈s(t̃) + [λw]2qs(t̃)
)2
dt̃

+λt

((
T̃1 − T1

)2 +
(
T̃0 − T0

)2)
(13)

where the dependence on lw and bw is via Eq. (11), and q̈s(t̃) is shorthand notation for

q̈s(t̃) = d2qs (t̃)
dt̃2

. The first term in Eq. (13) intends to homogenize the intrinsic func-
tional length scales by encouraging functional invariance with respect to second-order
differentiation. The second term inEq. (13) is a regularization term that penalizes range
changes, and λw is the corresponding regularization parameter, which is optimized by
cross-validation.

Step 2: Interpolation. The second step dealswith function interpolation. The original
data points ys(ti) are mapped to the warped time points, ys(t̃i). We then apply standard
kernel ridge regression with an RBF kernel in the warped time domain, as in Eq. (9),

2 It would be more accurate to write ts and t̃s instead of t and t̃ , but we avoid this for notational simplicity.

123

722 M. Niu et al.

which gives us the smooth interpolant qs(t̃), for each of the variables s in the dynamical
system in turn:

qs(t̃; bq s) =
n∑

j=1

bqs j k(t̃, t̃ j) (14)

In order to perform gradient matching, we need to compute the gradient in the
original time domain for each ODE state. By applying the chain rule of standard
calculus, as in Eq. (15), the gradient in the original time domain can be calculated
as the dot product of the gradient in the warped domain q̇s(t̃) and the gradient of the
warping function dt̃/dt = ẇs(t), where ws(t) is defined in Eq. (11). To control the
smoothness of the warping function over the entire time domain, the standard kernel
ridge regression with an MLP kernel (Bishop 2006, chapter 6) is applied to the set of
warped time points {ti , t̃i } obtained in Step 1. Unwarping qs(t̃) back into the original
time domain t is straightforward. Since ws(t) is bijective, we have gs(t) = qs(t̃), see
Eq. (12), and

dgs(t)

dt
= dqs(t̃)

dt
=

n∑

j=1

bqs j
∂k(t̃, t̃ j)

∂ t̃

d t̃

dt
=

n∑

j=1

bqs j
∂k(t̃, t̃ j)

∂ t̃
ẇs(t). (15)

Step 3: Parameter estimation. Finally, we estimate the ODE parameters (θ) with
standard gradient matching, i.e. by minimizing the following objective function3 with
respect to θ :

L(θ) =
r∑

s=1

n∑

i=1

[
ġs(ti) − fs(g(ti), θ)

]2
(16)

where ġs(ti) is given by Eq. (15). The warped gradient matching (RKGW) method is
implemented in KGode in the warpfun(.) function, which is described in Algo-
rithm 2.

2.4 ODE regularization

The ODE parameter estimation described in the previous two sections is purely based
on the observed data without considering the dynamics of the ODE system. We now
introduce an approach for estimating the ODE parameters by using the ODEs them-
selves as a regulariser. The first step follows standard gradient matching. In step 2,
a combined loss function is introduced to penalize both the deviation of interpolants
from the data and the difference between the gradient obtained from the interpolants
and the gradient predicted from the ODEs. The ODE parameters and the coefficients
of the kernel basis can be updated simultaneously or iteratively by minimizing the
combined loss function.

3 Recall that ti depends on s, so a more accurate (but cumbersome) notation would be gs (ti) → gs (tsi).

123

R package for statistical inference in dynamical systems. . . 723

Algorithm 2 : Warped gradient matching:
warpfun(odem,rkhsReg,peod,eps,inilens,y_no)
Input: ode class object, rkhs regression object, warped period, period error, initial hyper-parameters for
the warping basis function and noisy observations.
1: for s = 1 : N_s do 	 N_s is the number of states in the ODEs
2: Define the warping function t̃ = ws (t, bw, lw) as the summation of sigmoid basis functions S(z, lw)

using RKHS regression in Eq. (11).
3: Find the time warping parameters lw, bw, T0 and T1 by optimizing the objective function of Eq. (13).
4: Obtain the RKHS interpolants for the ODE states in the warped time domain as qs (t̃; bq s) from

Eq. (14), with bs obtained from Eq. (9) and the regularization parameter λs determined by cross-
validation.

5: end for
6: Estimating the ODEs parameters using gradient matching and optimizing the function in Eq. (16)
Output: A list of rkhs class objects containing the interpolation results for each ODE state in the warped
time domain, the gradient of the warping function at the data points, the warped time domain, time warping
function, and an updated ode class object containing the ODE parameter estimates.

Step 1—Initialization of regression coefficients and ODE parameters using standard
gradient matching. Following standard kernel ridge regression, the interpolants
gs(t) from Eq. (4) are obtained by minimizing the loss function in Eq. (6). The RKHS
regression coefficients are computed from Eq. (9). The ODE parameters are estimated
by minimizing the loss function in Eq. (10). The regularizing influence of the ODEs
acting back onto the interpolant is incorporated by minimizing the objective function
E(θ , B) of Eq. (17) in step 2.

Step 2—Minimization of the combined objective function. The subsequent min-
imization of E(θ , B) with respect to both arguments is a complex non-convex
optimization problem. We provide two schemes for optimizing E(θ , B). The first
scheme involves optimizing both b and θ simultaneously using a standard optimiza-
tion routine, such as conjugate gradients or quasi-Newton.

E(θ, B) =
r∑

s=1

(
n∑

i=1

[
gs(ti ; bs) − ysi

]2
)

+λ

r∑

s=1

(
n∑

i=1

[
ġs(ti ; bs) − fs(g(ti , B), θ)

]2
)

(17)

As this can be computationally expensive, we also present a fast iterative approach as
an alternative. Consider Eq. (17).When fixing B in the argument of fs(.), the objective
function becomes convex in the remaining parameters B because of the linearity in
Eq. (4). This convexity can be exploited with a modified optimization algorithm. First,
we define the following modified objective function:

Ẽ(θ , B, B̃) =
r∑

s=1

(
n∑

i=1

[
gs(ti ; bs) − ysi

]2
)

123

724 M. Niu et al.

+λ

r∑

s=1

(
n∑

i=1

[
ġs(ti ; bs) − fs(g(ti , B̃), θ)

]2
)

(18)

We can now iterate the following steps to optimize B and θ :

1. Given B = B̃ and θ , minimize Ẽ(θ , B, B̃) with respect to B,
i.e. find Bnew = argminB Ẽ(θ , B, B̃)

2. Set B = Bnew and minimize Ẽ(θ, Bnew, Bnew) wrt θ ,
i.e. find θnew = argminθ Ẽ(θ , Bnew, Bnew)

The ODE regularization (RKG3) method is implemented in KGode in the
third(.) function, which is described in Algorithm 3.

Algorithm 3 : ODE regularization:
third(lambda,odem,rkhsReg,crtype)
Input: weighting parameter λ, ode class object, rkhs regression objects, optimization type (crtype).
1: Use the standard gradient matching results (θ , B) as the initialization for following steps.
2: if crtype == Simultaneously updating then
3: Simultaneously update θ and B by minimizing the objective function in Eq. (17).
4: else if crtype == Iteratively updating then
5: Iteratively update θ and B by minimizing the objective function in Eq. (18).

Output: A list of rkhs objects containing the improved interpolation results for each ODE state and a vector
containing the updated ODE parameter estimates, following the procedure described below Eq. (18).

Algorithm 4 : ODE regularization with time warping:
third(lambda,odem,rkhsReg,crtype,woption,dtilda)
Input:weighting parameterλ, ode class objects, rkhs regression objects, optimization type (crtype),warping
indicator (coption), gradient of warping function.
1: if woption == warping then
2: Use the warping gradient matching results (θ , Bq) as the initialization for the following steps.
3: if crtype == Simultaneously updating then
4: Simultaneously update θ and Bq by minimizing the objective function in Eq. (19), with dt̃i /dti =

dtilda
5: else if crtype == Iteratively updating then
6: Iteratively update θ and Bq byminimizing the objective function in Eq. (20), with dt̃i /dti = dtilda.

7: else Algorithm 3.

Output: A list of rkhs objects containing the improved interpolation results for each ODE state, a vector
containing the updated ODE parameter estimates.

2.5 Warping plus ODE regularization

In this section, we combine the warping scheme with the ODE regularization method.
The rationale is to usewarping to learn the interpolation of the nonstationary signal and
then apply ODE regularization to further improve the ODE parameter estimations. We

123

R package for statistical inference in dynamical systems. . . 725

first apply the standard gradient matching as an initialization. The warping scheme in
Sect. 2.3 is applied in the second step. The ODE regularization can then be introduced
in the last step to regularize the warped interpolant. Since we are doing gradient
matching with the warped interpolant, we need to compute the gradient in the original
time domain by multiplying the gradient of the interpolant dqs(t̃i ; bqs)/dt̃i by the
gradient of the warping function dt̃i/dti , following the chain rule of basic calculus.
Similar to step 2 of Sect. 2.4, ODE parameters can be estimated by minimizing the
combined loss function from Eq. (17), which can be re-written as Eq. (19). As in the
previous section, we provide two approaches to optimize this loss function in step 3.
In the first approach, we optimize both the ODE parameters θ and Bq simultaneously.
The alternative approach is to follow the fast iterative updating scheme described in
Sect. 2.4. The weighting parameter λ can be estimated with cross-validation.

Step 1—Standard gradient matching as in Sect. 2.2.

Step 2—Warped gradient matching as in Sect. 2.3.

Step 3—Minimization of the combined objective function. Replace gs(t)with qs(t̃)
in Eqs. (17) and (18) and apply the chain rule to the derivative of the interpolant. This
gives:

E(θ , Bq) =
r∑

s=1

n∑

i=1

[
qs(t̃i ; bqs) − ysi

]2

+λ

r∑

s=1

n∑

i=1

[dqs(t̃i ; bqs)
dt̃i

dt̃i
dti

− fs(q(t̃i , Bq), θ)
]2

(19)

or

E(θ , Bq , B̃
q
) =

r∑

s=1

n∑

i=1

[
qs(t̃i ; bqs) − ysi

]2

+λ

r∑

s=1

n∑

i=1

[dqs(t̃i ; bqs)
dt̃i

dt̃i
dti

− fs(q(t̃i , B̃q), θ)
]2

(20)

We can now either apply standard optimization algorithms, like conjugate gradients
or quasi-Newton, to minimize E(θ , Bq) in Eq. (20) simultaneously with respect to
both θ and Bq , or apply the iterative routine described below Eq. (18) to the objective
function of Eq. (20).

Thewarping plusODE regularization (RKGW3)method is implemented inKGode
in the warpfun(.) and third(.) functions. The warping step has been described
in Sect. 2.3. The ODE regularization for the warped signal is implemented in the
third(.) function (the same function described in Sect. 2.4). Two additional argu-
ments are used for ODE regularization with the warped signal, more details of which
are described in Algorithm 4.

123

726 M. Niu et al.

Table 1 Classes and functions for the package KGode and their relation to the mathematical equations

Class/ f unction Description Mathematical terminology

ode The ODE formulas, parameters and
numerical solver are kept in this R6
class

See Eq. (21) as an example

rkg The standard gradient matching approach
is implemented in this function

L(bs ,ϕs ; λs) in Eq. (6) and L(θ) in
Eq. (10) are minimized

warpfun The warped gradient matching approach
is implemented in this function

The warped time t̃ is learned by
minimizing the objective function of
Eq. (13). θ is estimated by minimizing
the objective function of Eq. (16)

third The ODE regularization method is
implemented in this function. It can be
combined with warpfun for warping
plus ODE regularization

θ and B are iteratively updated by
minimizing the objective function
defined in Eq. (18). For the combined
approach, θ is learned by minimizing
the objective function of Eq. (19)

bootstrap Uncertainty quantification of the
parameter estimates based on
bootstrapping is implemented in this
function

The bootstrap samples are computed
from the RKHS regression in Eq. (4).
See detailed procedures in Sect. 2.6

diagnostic Compute the residuals and produce the
diagnostic plots such as QQ plot and
residual plot

The residuals are computed by
subtracting the interpolant from the
data

2.6 Uncertainty quantification in ODE parameter estimation

For quantifying the uncertainty of the parameter estimates, we use an approach based
on residual bootstrapping (Efron and Tibshirani 1994). The basic idea is to gener-
ate a set of surrogate data that capture typical expected variations in the data, and
then repeat the parameter estimation on these surrogate data to get a distribution of
estimates. From this distribution, uncertainty quantification statistics like the stan-
dard deviation or median absolute deviation can be computed. In more detail, let
D = { y(t1), . . . , y(tN)} denote the original data, i.e. the noisy time series of N
measurements or observations. Let {x(t1), . . . , x(tN)} denote the approximation of
the unknown true signal, obtained from the RKHS procedure described in Sect. 2.
From the original data and the solution of the ODEs we obtain a set of residuals,
E = {ε(t1), . . . , ε(tN)}, where ε(ti) = y(ti) − x(ti). We now draw N elements with
replacement from set E , to obtain a bootstrap residual set Ẽ = {ε̃(t1), . . . , ε̃(tN)},
from which we obtain the bootstrap training set D̃ = { ỹ(t1), . . . , ỹ(tN)}, where
ỹ(ti) = x(ti) + ε̃(ti). We then apply the same parameter estimation procedure to
the bootstrap training data D̃ as for the original data D. This procedure is repeated K
times, for K separate bootstrap sets D̃1, . . . , D̃K , leading to K parameter estimates
θ̃1, . . . , θ̃K . This distribution can be summarized e.g. by the standard deviation or by
the median absolute deviation (MAD). The latter is a robust measure of variability
that is less susceptible to outliers than the standard deviation (Leys et al. 2013). We
multiply the MAD with a constant scale factor of k = 1.4826, henceforth referred

123

R package for statistical inference in dynamical systems. . . 727

to as adjusted MAD, which makes it a consistent estimator for the estimation of the
standard deviation of a normally distributed random variable (Ruppert 2010).

3 Library architecture and examples

The KGode package is designed around the R6 class model. R6 classes have reference
semantics and so computation is performed by mutating the state of objects. This can
be seen in the following subsections, where instances of an ode object are created
using the new constructor method. When the solve_ode method is called on this
instance, the state internal to the object is modified, which can then be accessed at a
later stage. The main classes and functions are shown in Table 1, with ode being the
central class in the system, used to store formulas and parameters and to performODE
solving, with the other functions being used to add extra functionality on top, such as
gradient matching, time warping and ODE regularization. Examples of the use of all
of these classes and functions to perform parameter inference in dynamical systems
is shown below.

3.1 Defining the differential equations and generating data from them

In this section, we provide an example of the code used with the FitzHugh–Nagumo
system. The FitzHugh–Nagumo ODEs are defined as a function
FN_fun, where x[1] and x[2] are the two states and a, b and c are the three ODE
parameters in Eq. (21). The numerical solver used in our package is the ode23s
function of the pracma package. The intermediate time points are selected by the
numerical solver.

FitzHugh–Nagumo The FitzHugh–Nagumo system is a two-dimensional dynamical
system used for modelling spike generation in axons (FitzHugh 1955). It has two state
variables, x1 and x2, and three parameters: a, b and c. We numerically solved the
ODEs for a = 0.2, b = 0.2, c = 3, t ∈ (0, 10), and initial conditions x1(0) = 0.5
and x2(0) = 1.

ẋ1 = dx1
dt

= c ·
(
x1 − x31/3 + x2

)
, ẋ2 = dx2

dt
= −c−1 (x1 − a + b · x2)

(21)

1 R> SEED <- 19537;set.seed(SEED)
2 R> library(KGode);library(mvtnorm);
3 R> FN_fun <- function(t, x, par_ode) {
4 + a = par_ode[1]
5 + b = par_ode[2]
6 + c = par_ode[3]
7 + as.matrix(c(c*(x[1]-x[1]ˆ3/3 + x[2]),-1/c*(x[1]
-a+b*x[2])))

8 + }

123

728 M. Niu et al.

9 R> solveOde <- ode$new(sample=2,fun=FN_fun)
10 R> xinit <- as.matrix(c(-1,-1))
11 R> tinterv <- c(0,10)
12 R> solveOde$solve_ode(par_ode=c(0.2,0.2,3),xinit,

tinterv)
13 R> n_o <- max(dim(solveOde$y_ode))
14 R> noise <- 0.01 ## 10db 0.1 20db 0.01 30db 0.001
15 R> y_no <- t(solveOde$y_ode)+rmvnorm(n_o,c(0,0),

noise*diag(2))
16 R> t_no <- solveOde$t

We start, in lines 1–7, by loading the KGode package and defining a function
(FN_fun) that computes the gradients of the states of the model at a particular value
of time (t) and the corresponding state (x). The function returns the gradients as an
Ns-by-1matrix, where Ns is the number of states. In line 8, the function is passed as an
argument to a new ode object; the other argument (sample) determines which time
points (as chosen by the solver) to provide output for. The default value (sample=1)
returns all of the time points chosen by the solver, whereas sample=n returns each
nth time point. As we are generating data, we need to provide the initial state values
(xinit), which take the form of a matrix with one column and one row per state (line
9). The final argument required by the numerical ODE solver is the time interval over
which to solve the ODEs (tinterv). In this example, the time interval is [0, 10].
This argument takes the form of a list comprising of two elements, the start and end
times. The ODEs are numerically integrated by calling method solve_ode of the
ode class, as seen on line 11. The first argument is a list of the ODEs parameters
(par_ode) in the order they are expected by the ODE function (FN_fun). In this
example, the values are 0.2, 0.2 and 3. The other arguments are as explained above.
Finally, in line 12, we extract the number of time points (n_o), and define the noise
level in line 13. The simulated data are created by adding independent identically
distributed normal noise to the outputs of the numerical integration (line 14). The time
points of the numerical solution are extracted in line 15. If the user wants to use a real
dataset, the numerical integration (line 11) and the perturbation by noise (line 14) are
replaced by reading in the data from an external file.

3.2 Standard gradient matching

We start with an example of ODE parameter estimation for the FitzHugh–Nagumo
system, using the standard gradient matching (RKG) method introduced in Sect. 2.2
and defined in Algorithm 1. The RKG method is implemented as function rkg. The
input arguments are an ode class object (odem), the noisy observation (y_no) and
the kernel type (ktype).

In order to create an ode class object, we need to provide the ODE parameter
initialization (init_par), the ODE state initialization (init_yode) and the time
points of observation (init_t). The ODE parameter initialization init_par is set
as a vector of size 3 (line 1), for the three parameters of the FitzHugh–Nagumo model.
In this example, all initial values are set to 0.1. The ODE states are initialized in line 2,

123

R package for statistical inference in dynamical systems. . . 729

with the initialization vector,init_yode, set to the noisy observations, y_no. The
time points of observations are defined in line 3, which were obtained from the last line
of the code fragment in the previous subsection. The ode class object odem is created
in line 4 by taking the FitzHugh–NagumoODE functionFN_fun as the first argument.
The second argument,grfun, is optional and allows the user to provide an analytically
derived gradient of the objective function with respect to the ODE parameters. If this
gradient is not available, it can be computed numerically by setting grfun=NULL (as
is done in this example). The other arguments are as explained above. In line 6, the
kernel type (ktype) for the RKHS interpolation scheme is defined. In this example, it
is set to ’rbf’, which stands for the RBF kernel. The ODE parameters are estimated
using the standard gradient matching method of Sect. 2.2 by calling the rkg function
in line 7. The input arguments are as explained above. The rkg function returns a list
rkgres containing the RKHS interpolation results for each of the ODE’s states. In
line 8, the ode class object odem gets updated and the ODE parameter estimation
results can be accessed from its attribute,odem$ode_par. The interpolation for each
of the ODE states can be accessed via the rkgres attribute (rkgres$intp[1,]),
as in line 10, where the first index of the matrix rkgres$intp[,] indicates the
ODE state. Here rkgres$intp[1,] gives us the prediction of the first ODE state.

1 R> init_par = rep(c(0.1),3)
2 R> init_yode = t(y_no)
3 R> init_t = t_no
4 R> odem = ode$new(fun=FN_fun,grfun=NULL,t=init_t,
5 + ode_par=init_par,y_ode=init_yode)
6 R> ktype = ’rbf’
7 R> rkgres = rkg(odem,y_no,ktype)
8 R> odem$ode_par
9 +[1] 0.1852 0.022 2.4075
10 R> plot(odem$t,rkgres$intp[1,])
11 R> diagnostic(rkgres,type=‘rkg’,index=1,qq_plot=TRUE)

The interpolation from the standard gradient matching method is plotted together
with the true solution of the ODEs and the noisy observation in panel (a) and (b) in
Fig. 2. These plots can be produced by running the code in line 10, and editing the
outputs with standard plotting programs. The QQ plots and the residual plots are given
in panel (c)–(f) in Fig. 2.
The package also offers different kernel options, such as the RBF kernel and the MLP
kernel. Switching the kernel can be easily done with the redefinition command, e.g.
ktype = ’mlp’. The interpolant obtained from MLP RKHS regression and the
corresponding QQ plot of the residuals are given in Fig. 3. The points of the QQ plots
in panel (d) of Fig. 3 fall along a line in the middle of the graph, but curve off in the
extremities, which indicates a heavy-tailed distribution of the residuals. From a visual
inspection of the figure, it is clear that RKHS regression with the RBF kernel achieves
a better fit than RKHS regression with the MLP kernel.

12 R> ktype = ’mlp’
13 R> rkgres = rkg(odem,y_no,ktype)

123

730 M. Niu et al.

0 2 4 6 8 10

−2
−1

0
1

2

time

Data
True
RKG

x 1

(a) Interpolation for x1

0 2 4 6 8 10

−1
.0

−0
.5

0.
0

0.
5

1.
0

time

Data
True
RKG

x 2

(b) Interpolation for x2

−2 −1 0 1 2

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

(c) QQ plot for x1

−2 −1 0 1 2

−0
.1

0.
0

0.
1

0.
2

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

(d) QQ plot for x2

−2 −1 0 1 2

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3 residual vs interpolate

interpolation

re
si

du
al

(e) residual plot for x1

−1.0 −0.5 0.0 0.5 1.0

−0
.1

0.
0

0.
1

0.
2

residual vs interpolate

interpolation

re
si

du
al

(f) residual plot for x2

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

Fig. 2 RKG (RBF kernel) interpolation for the FitzHugh–Nagumo model. Panel (a) shows the true signal
(solid line), the noisy data (crosses),with signal-to-noise ratioSNR=20db, and the interpolant obtained from
standardRBFkernelRKHS regression (RKG—dashed line) for thefirst state variable, x1. The corresponding
plots for the second state variable, x2, are shown in panel (b). The QQ plots of the residuals are in panels
(c) and (d). The residual analysis plots are in panels (e) and (f)

123

R package for statistical inference in dynamical systems. . . 731

0 2 4 6 8 10

−2
−1

0
1

2

time

Data
True
RKG

x 1

(a) Interpolation for x1

0 2 4 6 8 10

−1
.0

−0
.5

0.
0

0.
5

1.
0

time

Data
True
RKG

x 2

(b) Interpolation for x2

−2 −1 0 1 2

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

0.
15

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

(c) QQ plot for x1

−2 −1 0 1 2

−0
.1

0
−0

.0
5

0.
00

0.
05

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

(d) QQ plot for x2

−2 −1 0 1 2

residual vs interpolate

interpolation

re
si

du
al

(e) residual plot for x1

−1.0 −0.5 0.0 0.5 1.0

−0
.1

0
−0

.0
5

0.
00

0.
05

residual vs interpolate

interpolation

re
si

du
al

(f) residual plot for x2

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

0.
15

Fig. 3 RKG (MLP kernel) interpolation for the FitzHugh–Nagumo model. Panel (a) shows the true signal
(solid line), the noisy data (crosses), with signal-to-noise ratio SNR=20db, and the interpolant obtained
from MLP kernel RKHS regression (RKG—dashed line) for the first state variable, x1. The corresponding
plots for the second state variable, x2, are shown in panel (b). The QQ plots of the residuals are in panels
(c) and (d). The residual analysis plots are in panels (e) and (f)

123

732 M. Niu et al.

14 R> odem$ode_par
15 +[1] 0.317 0.243 2.877
16 R> diagnostic(rkgres,type=‘rkg’,index=1,qq_plot=TRUE)

3.3 Warping gradient matching

The warping gradient matching scheme, described in Sect. 2.3 and Algorithm 2, is
applied to estimate the parameters of a biopathways ODE system. The biopathways
ODEs are defined as a function BP_fun. The variables x[1], x[2],x[3], x[4] and x[5]
represent the five states, and k1,k2,k3,k4,k5,k6 are the six ODE parameters, as shown
in Eq. (22).

Biopathways The biopathway model describes the interaction of five protein iso-
forms, S, dS, R, RS, Rpp, in a signal transduction pathway and was previously
studied by Vyshemirsky and Girolami (2008). Changes in protein abundance over
time are described by a combination of mass action and Michaelis–Menten kinetics:

[Ṡ] = −k1 · [S] − k2 · [S] · [R] + k3 · [RS]
[ḋ S] = k1 · [S]

˙[R] = −k2 · [S] · [R] + k3 · [RS] + k5 · [Rpp]
k6 + [Rpp]

˙[RS] = k2 · [S] · [R] − k3 · [RS] − k4 · [RS]
˙[Rpp] = k4 · [RS] − k5 · [Rpp]

k6 + [Rpp] (22)

The square brackets, [·], denote concentrations of protein isoforms (the states), and
k1:6 represent the 6 kinetic parameters to be inferred. It turns out that k5 and k6 are
only weakly identifiable, and we have thus assessed the accuracy of inference based
on the ratio k5

k6
. In this example, we numerically solve the ODEs for k1 = 0.07, k2 =

0.6, k3 = 0.05, k4 = 0.3, k5 = 0.017, k6 = 0.3, t ∈ (0, 100), with initial conditions
S(0) = 1, dS(0) = 0, R(0) = 1, RS(0) = 0 and Rpp(0) = 0. Using the default
stepsize settings of the numerical integration scheme, this generates n = 14 data
points. Similar to Sect. 3.1, the first 11 lines define the ODE function (BP_fun),
which is used to compute the gradients of the states of the Biopathways model at time
(t) and state (x). The function returns the gradients as a 5-by-1 matrix, reflecting the
fact that the Biopathways model has 5 states. The function is passed as an argument
to the ode object in line 12. The other argument is set as sample=2, which is a
thinning factor that instructs the numerical integrator to keep every second time point.

1 R> BP_fun <- function(t, x, par_ode) {
2 + k1 = par_ode[1]
3 + k2 = par_ode[2]
4 + k3 = par_ode[3]
5 + k4 = par_ode[4]
6 + k5 = par_ode[5]

123

R package for statistical inference in dynamical systems. . . 733

7 + k6 = par_ode[6]
8 + as.matrix(c(-k1*x[1]-k2*x[1]*x[3]+k3*x[4],
9 + k1*x[1],-k2*x[1]*x[3]+k3*x[4]+k5*x[5]/(k6+x[5]),
10 + k2*x[1]*x[3]-k3*x[4]-k4*x[4],k4*x[4]-k5*x[5]/

(k6+x[5])))
11 + }
12 R> solveOde = ode$new(sample=1,fun=BP_fun)
13 R> xinit = as.matrix(c(1,0,1,0,0))
14 R> tinterv = c(0,100)
15 R> solveOde$solve_ode(par_ode=c(0.07,0.6,0.05,0.3,

0.017,0.3),
+ xinit,tinterv)

16 R> n_o = max(dim(solveOde$y_ode))
17 R> y_no = t(solveOde$y_ode) + rmvnorm(n_o,c(0,0,0,0,0),

+ noise*diag(5))

To generate data, we need to specify the initial state values (xinit), which are here
given by a 1-by-5 matrix (line 13). The last argument required by the numerical ODE
solver is the time interval (tinterv), which is defined as a vector comprising the
start and end times. In this example, the times are 0 and 100. The ODEs are then
numerically solved by calling method solve_ode of the ode class in line 15. The
true values of the ODE parameters are given as the first argument (par_ode); the
other arguments are as explained above. Finally, we extract the number of time points
(n_o) and emulate real-world data by adding independent and identically distributed
(iid) normal noise to the simulated values (line 17).

18 R> init_par = rep(c(0.1),6)
19 R> init_yode = t(y_no)
20 R> init_t = solveOde$t
21 R> odem_BP = ode$new(fun=BP_fun,t=init_t,ode_par=init_par,
22 + y_ode=init_yode)
23 R> ktype = ’rbf’
24 R> rkgres = rkg(odem_BP,y_no,ktype)
25 R> odem_BP$ode_par
26 + 3.470006e-02 3.812962e-01 3.183004e-88 2.429603e-01
+ 1.750964e+03 7.494085e+04

Next, we essentially follow the steps described in Sect. 2.3. We begin with the
standard gradient matching scheme (RKG) with RBF kernel to estimate the ODE’s
parameters. In line 18, the ODE parameter initialization, init_par, is set as a vector
of length 6, with all elements equal to 0.1. In the following line, line 19, the ODE states
initialization,init_yode, is set to the vector of noisy observationsy_no. The vector
of selected time points, init_t, is set to the times of the observations (line 20). An
ode class object (odem_BP) is created in lines 21–22 by taking the ODE function
BP_fun as the first argument, with the other arguments as explained above. In line 23,
the kernel type, ktype, is set to ’rbf’, which indicates the use of the RBF kernel
for RKHS interpolation. Finally the ODE parameters are estimated by calling the rkg
function in line 24. The rkg function returns a list object, rkgres, containing the

123

734 M. Niu et al.

interpolation results for each of the ODE states. The ODE parameter estimation results
can be accessed from the attributeode_par of theode class objectodem_BP, which
in this example code fragment is done in lines 25–26.

27 R> peod = c(200,200,200,200,200)
28 R> eps = 20
29 R> fixlens = warpInitLen(peod,eps,rkgres)
30 R> interp_rkhs = rkgres$bbb
31 R> warp_BP = warpfun(odem_BP,interp_rkhs,peod,eps,

fixlens, + y_no,init_t)
32 R> warp_BP$wkkk$ode_par
33 +[1] 6.84e-02 5.94e-01 3.71e-02 2.98e-01 1.29e-02

5.59e-07
34 R> dtilda_t = warp_BP$dtilda # gradients of warping

functions
35 R> warp_inter = warp_BP$bbbw # interpolation in warped
time + domain

36 R> tilda_t = warp_BP$wtime # warped time points
37 R> wfun = warp_BP$wfun # warping functions
38 R> grids = c(0:100)
39 R> wgrid = wfun[[1]]$predictT(grids)$pred # warped

grid points
40 R> plot(grids,warp_inter[[1]]$predictT(wgrid)$pred)

plot + interpolation in the original domain.
41 R> plot(grids, wgrid,type=’l’) #plot warping function
42 R> diagnostic(warp_BP,1,‘warp’,qq_plot=TRUE)

In order to learn the warping function defined in Eq. (11), a list of user-defined target
periods of the warped signal needs to be provided for each ODE state. In this example,
the target period peod is defined as a vector of size 5 with all elements equal to
200; see line 27. The period of the warped signal is allowed to vary from peod-eps
to peod+eps, where in this example eps is set equal to 20, in line 28. With this
configuration, the estimated period will be in the range of 180–220. The warping
function ismodelled as a linear combination of sigmoid functions, as shown inEq. (11).
The initial value of the hyperparameter of the sigmoid basis function is estimated with
function warpInitLen, in line 29. The list object rkgs of the standard gradient
matching results is used as the input argument of the warpInitLen function. The
rest of the arguments are peod and eps, as explained above. The function returns a
list object, fixlens, which contains the estimated hyperparameters of the sigmoid
basis function for each ODE state.

Steps 1 and 2 of the warping process described in Sect. 2.3 are built into the function
warpfun. This requires the standard RKHS interpolation results, inter_rkhs, as
one of the input arguments. These standard RKHS interpolation results are given as a
list object from the attribute of rkgres in line 30. Here, rkgres is the list object
returned by the standard gradient matching function rkg, as in line 24 of the code
fragment shown earlier on. The other arguments are the ode class object odem_BP,
the user-defined target period peod, the period range parameter eps, the initial value

123

R package for statistical inference in dynamical systems. . . 735

of the hyperparameter for the sigmoid basis function fixlens, the vector of noisy
observations y_no and the vector of observation time points init_t. The warping
functions are learned by calling the functionwarpfun in line 31. The function returns
a list object warp_BP that contains the warping results.

In this example,the ODE parameters are estimated with gradient matching using
the gradient of the interpolant, the gradient of the warping function and the gradient
from the ODEs. The ODE parameter estimates are available from the attribute of the
returned list object warp_BP$wkkk$ode_par in line 32. The parameter estimation
results are displayed in line 33. Notice the large values for the estimates of the last two
parameters, k5 and k6, which are orders of magnitudes above the other values. This
reflects the weak identifiability inherent in the estimation process, which only allows
the reliable estimation of the fraction k5/k6 rather than the values of k5 and k6 them-
selves. In fact, a comparison of the estimated ratio k5/k6with the true ratio gives very
good agreement, whereas the individual values of k5 and k6 may vary substantially.
The gradient of the warping function dtilda_t is given as warp_BP$dtilda, in
line 34. The interpolants for the various ODE states have also improved as a conse-
quence of carrying out the RKHS regression in the warped time domain. The improved
interpolants are returned as the attribute of the list object warp_BP$bbbw in line 35.
In line 36, the warped time points are returned as a vector of size 14, tilda_t,
from warp_BP$wtime. In line 37, the warping functions for the ODE states, wfun,
are returned as a list of functions from warp_BP$wfun. In the present example,
the length of the function list, wfun, is 5, which is the number of ODE states in the
biopathways system. Note that these warping functions can be used to project the
time points from the original domain into the warped domain. In order to have a bet-
ter visualization of the warping function, we introduce in line 38 a vector of dense,
equidistant grid points, grids, of length 101. The warping function for the first ODE
state, wfun[[1]], is used to project the grid points from the original domain into
the warped domain, wgrid, by calling method wfun[[1]]$predictT(grids)
in line 39. The returned object is a vector of length 101.

A plot of the warping functions over the grid points is shown in Fig. 4b. The inter-
polation results obtained with time warping are compared with the standard gradient
matching approach in Fig. 4a. Figure 4c shows a comparison of the interpolants in
the warped time domain and the true solution. Finally, two QQ plots of the residuals
obtained with the warping and the RKG methods are shown in Fig. 4d, e. The points
in panel (e) form a curve instead of a straight line, which indicates that the distribution
of the residuals is skewed and deviates from the assumed Gaussian form. It is clear
in this case that the warping method achieves a substantially better fit of the data than
the non-warped RKG method.

3.4 ODE regularization

In this section we illustrate how gradient matching with ODE regularization, as dis-
cussed in Sect. 2.4 and defined in Algorithm 3, is applied to estimate the parameters
of the Lotka–Volterra system.

123

736 M. Niu et al.

20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

time

Observation
true
RKG interpolation
RKGW interpolation

s (
t)

(a) noisy observation

0
20

40
60

80
10

0

time

Warping functiont~

(b) warping function

true
Observation
RKGW interpolation

s (
t)

t~

(c) interpolation in t̃

−2 −1 0 1 2

−0
.0

4
−0

.0
2

0.
00

0.
02

0.
04

0.
06

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

(d) QQ plot for warping method

−2 −1 0 1 2

−0
.0

5
0.

00
0.

05
0.

10
0.

15
0.

20

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

(e) QQ plot for RKG method

0 20 40 60 80 100

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

Fig. 4 Warping example for the Biopathways model. The true signal (dotted line), the noisy data (crosses),
the initial interpolation using the standard RBF kernel RKHS regression (RKG) (solid line) and the RKGW
interpolation using warping (dashed line) are shown in panel (a). RBF regression is unable to cope with
both the rapid drop and the saturated section of the curve. The warping function is shown in panel (b). The
interpolation in the warped time domain using the RBF kernel (dashed blue line) and the warped true signal
(dotted red line) are shown in panel (c). QQ plots of the residuals for the warping method and the RKG
method are shown in panels (d) and (e), respectively
123

R package for statistical inference in dynamical systems. . . 737

Lotka–Volterra. The Lotka–Volterra equations describe the dynamics of ecological
systems with predator–prey interactions (Lotka 1920):

ẋ1 = α · x1 − β · x1 · x2, ẋ2 = −γ · x2 + δ · x1 · x2 (23)

where the dot denotes a derivative with respect to time, α, β, γ, δ are four parameters
to be inferred, and x1 and x2 are the states of the model, indicating the number of
prey and predators respectively. We numerically solved the ODEs for α = 0.2, β =
0.35, γ = 0.7, δ = 0.4 and initial conditions x1(0) = 1 and x2(0) = 2.

The Lotka–Volterra ODEs are defined as a function, LV_fun, in lines 1–8 of the fol-
lowing code fragment, where x[1], x[2] are the two states and alpha,beta,gamma,delta
are the four ODE parameters, as defined in Eq. (23):

1 R> LV_fun = function(t, x, par_ode) {
2 + alpha = par_ode[1]
3 + beta = par_ode[2]
4 + gamma = par_ode[3]
5 + delta = par_ode[4]
6 + as.matrix(c(alpha*x[1]-beta*x[2]*x[1],
7 + -gamma*x[2]+delta*x[1]*x[2]))
8 + }
9 R> solveOde = ode$new(1,fun=LV_fun)
10 R> xinit = as.matrix(c(1,2))
11 R> tinterv = c(0,30)
12 R> solveOde$solve_ode(c(0.2,0.35,0.7,0.4),xinit,

tinterv)
13 R> n_o = max(dim(solveOde$y_ode))
14 R> y_no = t(solveOde$y_ode)+rmvnorm(n_o,c(0,0),

noise*diag(2))

Following the procedure in Sect. 3.1, the ODE function (LV_fun) is defined to
compute the gradients of the states of the Lotka–Volterra model at time (t) and state
(x). The function returns the gradients as a 2 by 1 matrix, reflecting the fact that the
Lotka–Volterra model has 2 states. The function is passed as the second argument
to object ode in line 9. The first argument of ode is sample, which is here set
to sample=1 to indicate that the numerical solutions at all time points chosen by
the numerical solver are to be returned. As we generate data, the initial state values
(xinit) are provided as a 1 by 2 matrix (line 10). In this example, they are set
to x1(0) = 1 and x2(0) = 2, as indicated above. The last argument required by the
numerical ODE solver is the time interval defining the start and end times (tinterv).
In this example, these times are set to 0 and 30, respectively; see line 11. The ODEs
are then solved numerically by calling method solve_ode of the ode class in line
12. The true values of ODE parameters are given as the first argument, par_ode. In
this example, these are the parameter values α = 0.2, β = 0.35, γ = 0.7, δ = 0.4.
The other arguments of this method are as explained above. Finally, in line 13, we
extract the number of time points (n_o), and in line 14 we simulate realistic data by
adding independent and identically distributed normal noise to the numerical solution

123

738 M. Niu et al.

of the ODEs. In this example, the simulated data, y_no, are a matrix of size 43 by 2,
where 43 is the number of time points (chosen by the numerical ODE solver4), and 2
is the number of states (prey and predator).

15 R> init_par = rep(c(0.1),4)
16 R> init_yode = t(y_no)
17 R> init_t = solveOde$t
18 R> odem_LV = ode$new(1,fun=LV_fun,t=init_t,ode_par=init_par,
19 + y_ode=init_yode)
20 R> ktype = ’rbf’
21 R> rkgres = rkg(odem_LV,y_no,ktype)
22 R> odem_LV$ode_par

+[1] 0.069 0.187 0.662 0.383

Following the procedure of step 1 in Sect. 2.4, we first apply standard gradient
matching to estimate the ODEs parameters and update the RKHS regression coeffi-
cients, i.e. bs in Eq. (4). As in Sect. 3.2, the ODE parameter initialization, init_par,
is set as a vector of length 4 in line 15. The ODE states are initialized in line 16, where
they are set to the noisy observations, y_no. The vector of time points, init_t,
would usually be set to include the times points at which measurements or observa-
tions were taken. For this example using simulated data, init_t is the vector of
time points for which values have been returned by the numerical ODE solver. An
ode class object (odem_LV) is created in line 18, which takes the ODE function,
LV_fun, and the parameters just explained, init_par, init_yode, init_t, as
arguments. The kernel type, ktype, is set to ’rbf’, which indicates the use of the
RBF kernel for the RKHS interpolation. Finally the ODE parameters are estimated
by calling function rkg in line 21. The rkg function returns a list object, rkgres,
which contains the interpolation results for each of the ODE states. The ODE parame-
ter estimation results are recorded as the attribute, ode_par, of the ode class object
odem_LV in line 22.

23 R> crtype = ’i’
24 R> lam = c(10,1,1e-1,1e-2)
25 R> lambdalist = crossv(lam,odem_LV,rkgres$bbb,crtype,y_no)
26 R> res = third(lambdalist[[1]],odem_LV,rkgres$bbb,crtype)
27 R> res$oppar

+[1] 0.120 0.255 0.669 0.378

In step 2 of Sect. 2.4, we have shown how the ODE parameter estimation can be
improved by optimizing the combined loss function in Eq. (17). Step 2 of Sect. 2.4 is
implemented in lines 23–27.Herewe provide two schemes for theODE regularization.
A scheme indicator crtype is defined in line 23. If crtype==’i’, the fast iterative
approach of Eq. (18) is used. If crtype==’3’, we update the ODE parameters and
RKHS regression coefficients simultaneously, by optimizing the function in Eq. (17).
In this example we employ the iterative approach. The weighting parameter λ of the

4 The numerical solver we have used is ode23s from the pracma package. It is based on the Runge–Kutta23
numerical integrationmethod. This method chooses the numerical integration step size automatically, based
on the derivative of the function or the stiffness of the solution. The numerical solver will assign more points
in stiff areas.

123

R package for statistical inference in dynamical systems. . . 739

0 5 10 15 20 25 30

0
1

2
3

4
5

time

Data
True
RKG
RKG3

x 1

Fig. 5 ODE regularization with iterative updating scheme. The figure shows the true solution (solid line)
of the Lotka–Volterra system, noisy observations of sample size n = 42 (crosses), the interpolant obtained
with the standard gradient matching method (red dashed line), and the interpolant obtained with the ODE
regularization method (blue dash-dotted line). It is seen that the ODE regularization interpolant shows
better agreement with the true signal. This demonstrates the effectiveness of the regularization inherent in
the ODE regularization step by which the ODEs act back as a regulariser on the interpolant

penalty term in Eq. (18) is estimated using cross validation. A list of potential values
of λ are defined in lam, line 24; in this example, there are 4 candidate values, ranging
from 0.01 to 10. The optimum value of λ is selected by calling function crossv in
line 25. The input arguments are the vector lam, the ode class object odem_LV, a list
of rkhs objects rkgres$bbb, which are created in the previous standard gradient
matching step, the scheme type crtype, and the observation y_no. The crossv
function returns a list object containing the optmized value of λ. Next, functionthird
is called in line 26 to re-estimate the ODE parameters and improve the interpolation
by using the ODEs for regularization, as described in Algorithm 3. The optimized
value of λ is the first argument. The remaining input arguments of function third
are the same as for function crossv, which have been explained above. The third
function returns a list object containing the improved ODE parameters and ODE state
interpolants. The interpolation results of the ODE regularization are compared with
the standard gradient matching approach in Fig. 5.

3.5 Warping plus ODE regularization

We have described the combination of time warping and ODE regularization in
Sect. 2.5 and Algorithm 4. In the present section, we demonstrate an application of
this scheme to the Lotka–Volterra system. The ODE model is the same as in Eq. (23).
We assume that the true parameters are α = 1, β = 1, γ = 4, δ = 1 and the initial

123

740 M. Niu et al.

conditions are x1(0) = 0.5 and x2(0) = 1. The numerical integration of the ODEs and
the generation of the training data is done with the following code fragment, which is
similar to the corresponding code in Sect. 3.4:

1 R> solveOde = ode$new(2,fun=LV_fun)
2 R> xinit = as.matrix(c(0.5,1))
3 R> tinterv = c(0,6); noise = 0.25
4 R> solveOde$solve_ode(c(1,1,4,1),xinit,tinterv)
5 R> n_o = max(dim(solveOde$y_ode))
6 R> t_no = solveOde$t
7 R> y_no = t(solveOde$y_ode)+rmvnorm(n_o,c(0,0),
noise*diag(2))

Following the steps in Sect. 2.5 (lines 8–11), we next run the standard gradi-
ent matching scheme (RKG) with an RBF kernel (specified in line 12) by calling
function rkg, in line 13. The RKG estimates of the ODE parameters are listed in
odem_LV$ode_par; see line 15.

8 R> init_par = rep(c(0.1),4)
9 R> init_yode = t(y_no)
10 R> init_t = t_no
11 R> odem_LV = ode$new(1,fun=LV_fun,t=init_t,ode_par=init_par,

+ y_ode=init_yode)
12 R> ktype = ’rbf’
13 R> rkgres = rkg(odem_LV,y_no,ktype)
14 R> interp_rkhs = rkgres$bbb
15 R> odem_LV$ode_par

+ 1.024 1.13 3.44 0.93

The results of the standard gradient matching scheme are used to initialize the time
warping described in Sect. 2.3, invoked as in step 2 of Sect. 2.5. The user-defined
period of the warped signal peod is defined as a vector of size 2 in line 16. The target
period peod can vary in the range of peod+eps to peod-eps. The slack parameter
eps is set equal to 1 in line 17. The hyperparameter of the warping basis function is
initialized by calling function warpInitLen in line 18. The warping functions are
learned by calling the function warpfun in line 19. The input arguments have been
explained in Sect. 2.5. The function returns a list object, warp_LV, which contains
the warping results.

16 R> peod = c(6,5.3)
17 R> eps = 1
18 R> fixlens = warpInitLen(peod,eps,rkgres)
19 R> warp_LV = warpfun(odem_LV,interp_rkhs,peod,eps,
fixlens, + y_no,odem_LV$t)
20 R> dtilda = warp_LV$dtilda
21 R> Winterp_rkhs = warp_LV$bbbw
22 R> tilda_t = warp_LV$wtime
23 R> warp_LV$wkkk$ode_par

+ 1.046 1.175 3.38 0.935

123

R package for statistical inference in dynamical systems. . . 741

0 1 2 3 4 5 6

0
2

4
6

8
10

12
14

time

Observation
true
Warp Ode regularisation
RKGW interpolation
RKG interpolation

s(
t)

Fig. 6 Warping plus ODE regularization. The figure shows the true solution (black dotted line) of the
Lotka–Volterra system, noisy observations of sample size n = 28 (crosses), the interpolant obtained with
the standard gradient matching method (green dash-dotted line), the interpolant obtained from the warping
scheme (red solid line), and the interpolant obtained with warping plus ODE regularization method (blue
dashed line). It is seen that the standard gradient matching interpolant and warping interpolant show clear
signs of overfitting. The interpolant obtained from the combined warping plus ODE regularization scheme,
on the other hand, shows much better agreement with the true signal. This demonstrates the effectiveness
of the regularization inherent in the ODE regularization step, by which the ODEs act back as a regulariser
on the interpolant

The gradient of the warping function can be accessed as dtilda = warp_LV
$dtilda in line 20. The interpolation results after warping are available from
Winterp_rkhs = warp_BP$bbbw in line 21. The warped time t̃ is listed in
tilda_t = warp_BP$wtime in line 22. The ODE parameters are estimated with
gradient matching by combining the gradient of the interpolant, the gradient of the
warping function and the gradient from ODEs. The results are displayed by typing
warp_LV$wkkk$ode_par in line 23.

24 R> woption = ’w’
25 R> crtype = ’3’
26 R> lam = c(1,1e-1,1e-2,1e-3)
27 R> lamwlist = crossv(lam,odem_LV,Winterp_rkhs,crtype,y_no,

+ woption,tilda_t,dtilda)
28 R> lambdaw3 = lamwlist[[1]]
29 R> res = third(lambdaw3,odem_LV,Winterp_rkhs,crtype,woption,

+ dtilda)
30 R> res$oppar

+ 1.002 1.2 4.19 1.13

The ODE regularization step for the warped signal, described in Sect. 2.5, is imple-
mented in function third. The warping indicator, woption = ’w’, switches the

123

742 M. Niu et al.

warping option on, in line 24. In line 25, the optimization scheme is set to crtype
= ’3’, which tells the program that the ODE parameters and kernel regression coef-
ficients are to be updated simultaneously. Following the specification of a discrete set
of candidate values (here: {1, 0.1, 0.01, 0.0001}) in line 26, the weighting parameter
λ in Eq. (19) is estimated using cross-validation, which is implemented as function
crossv in line 27. The input arguments of third, called in line 29, are the weight-
ing parameter λ, lambdaw3, which has been extracted in the previous line, line 28,
the ode class object odem_LV, the rkhs object after warping Winterp_rkhs, the
optmization scheme type cytype, the warping indicator woption and the gradient
of the warping function, dtilda. The ODE parameter estimation and interpolation
results are returned as a list object in res, in line 29. The parameter estimation is
displayed by typing res$oppar in line 30. Various plots of the interpolant obtained
with different gradient matching and regularization methods are shown in Fig. 6.

3.6 Uncertainty quantification in ODE parameter estimation

In the following example,we apply the residual bootstrapmethod described in Sect. 2.6
to the Lotka–Voltera model for estimating the uncertainty of the parameter estimation.
We emphasize that the function bootstrap is a function of our own package; it is
not the CRAN package with the same name.

1 R> interp_rkhs = rkgres$bbb
2 R> nst = length(interp_rkhs)
3 R> ode_par = odem_LV$ode_par
4 R> intp_data = list()
5 R> for(i in 1:nst) {
+ intp_data[[i]] = interp_rkhs[[i]]$predictT(
+ interp_rkhs[[i]]$t)$pred
+ }
6 R> K = 12
7 R> mads = bootstrap(odem_LV,y_no,ktype,K,ode_par,
intp_data)

8 R> ode_par
+ 1.024 1.127 3.438 0.928
9 R> mads
+ 0.2148 0.0871 0.4501 0.0837

Following the samemodel settings as in Sect. 3.5, we assume that the standard gradient
matching approach in lines 1–15 of the code example in Sect. 3.5 has been applied.
A list of rkhs class objects is stored in interp_rkhs in line 1 of the R code
above. The length of the list is the same as the number the ODEs states, which is
stored in nst in line 2. Recall that the Lotka–Volterra model has two states: prey
and predator; hence nst=2. The ODE parameter estimation can be accessed from
the attributes of the ode class object odem_LV$ode_par in line 3. An empty list
object intp_data is created in line 4 to store the ODE states interpolation. The
interpolation results from the RKHS regression are calculated in line 5. The number of
bootstrap replicates is set to K=12 in line 6. The bootstrap procedure is performed by

123

R package for statistical inference in dynamical systems. . . 743

0.2

0.4

0.6

0.8

alpha beta gamma delta

Parameter

V
al

ue

Fig. 7 Dot plot of parameter estimates for the Lotka–Volterra model introduced in Sect. 3.4 for 100 differ-
ent random initializations. The true values for the parameters are alpha=0.2, beta=0.35, gamma=0.7,
delta=0.4

calling the functionbootstrap in line 7. The inputs to functionbootstrap are the
ode class object odem_LV, the vector of noisy observations y_no, the kernel type
ktype, the number of bootstrap replicates K, the vector of ODE parameter estimates
ode_par, and the RKHS interpolation results intp_data. The first three inputs
have been defined in Sect. 3.5. The outputs are the adjustedmedian absolute deviations
for the ODEs parameters. The four ODE parameter estimates for the Lotka–Volterra
model are shown in line 8 and the corresponding adjusted median absolute deviations
in line 9.

3.7 Effects of the initialization on ODE parameter estimation

Due to the optimization procedure of the KGode algorithm and potential multimodal-
ity of the objective function, different initializations may converge to different local
optima and may therefore give different parameter estimates. This is illustrated in
Fig. 7, where the example of Sect. 3.4 was run 100 times with different random num-
ber generator seeds. The variation in the parameter estimates is evident.We emphasize
that this is not necessarily a bad thing, as the combination of results from different
local optima can be used for uncertainty quantification. The parameter distributions
in Fig. 7 have some resemblance with posterior distributions from Bayesian analysis.
In fact, a recent study carried out by Pearce et al. (2020) shows that under certain
regularity conditions, the parameter distribution obtained from different local optima
is a good approximation of the Bayesian posterior distribution. We conjecture that a

123

744 M. Niu et al.

5 10 15 20

10
20

30
40

50
60

70

time

Observation
RKG
RKG3

(a) Interpolation for x1(Hare)

5 10 15 20

10
20

30
40

50

time

Observation
RKG
RKG3

(b) Interpolation for x2(Lynx)

−2 −1 0 1 2

−2
−1

0
1

2
3

4

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

(c) QQ plot for x1 RKG

−2 −1 0 1 2

−2
0

2
4

6

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

(d) QQ plot for x2 RKG

−2 −1 0 1 2

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

(e) QQ plot for x1 ODE regularization

−2 −1 0 1 2

−0
.5

0.
0

0.
5

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

(f) QQ plot for x2 ODE regularization

Fig. 8 RKG and ODE-regularized (RKG3) interpolation for the Hudson’s Bay Company’s data, using
the Lotka–Volterra model. Panel (a) shows the data (crosses) and the interpolant obtained from RKHS
regression (RKG—dashed line) and ODE regularization with RKG3 (solid line) for the first state variable,
x1 (hares). The corresponding plots for the second state variable, x2 (lynxes), are shown in panel (b). The
remaining panels show QQ plots of the residuals

123

R package for statistical inference in dynamical systems. . . 745

5 10 15 20

20
40

60
80

10
0

time

Observation
RKG
RKG3

(a) ODE solution for x1(Hare)

5 10 15 20

10
20

30
40

50
60

time

Observation
RKG
RKG3

(b) ODE solution for x2 (Lynx)

Fig. 9 Model prediction for the Hudson Bay’s Company’s pelt data. The parameter estimates from the
RKG andODE regularization (RKG3)methods were inserted into the Lotka–Volterramodel. The numerical
solution of the ODEs are plotted. Panel (a) shows the data (crosses) and the numerical solution of the ODEs,
whose parameters were estimated from RKHS regression (RKG—dashed line) and ODE regularization
(RKG3—solid line) for the first state variable, x1 (hares). The corresponding plots for the second state
variable, x2 (lynxes), are shown in panel (b)

combination with the bootstrap method discussed in Sect. 3.6 will further improve the
uncertainty quantification, but a detailed investigation of this is beyond the remit of
the present work. We note that the parameter distributions in Fig. 7 are reassuring.
The true parameters are included in the bulk (rather than the tails) of the distributions,
which confirms the consistency of our parameter estimationmethod, while the spreads
of the distributions indicate the intrinsic uncertainty of parameter estimation.

3.8 Real data application

In this section, we apply our standard gradient matching (RKG) and ODE regular-
ization (RKG3) methods to a real data set, the lynx and hare pelts collected by the
Hudson’s Bay company in Canada at the beginning of the 20th century (Carpenter
2018). The Lotka–Volterra model is fit to Canadian lynx (predator) and snowshoe hare
(prey) populations between 1905 and 1920, based on the number of pelts collected
annually. The data and interpolation for both predator and prey are plotted in panels
(a) and (b) of Fig. 8. By checking the QQ plots in Fig. 8, we observe that the residuals
of the RKG method are skewed to the right, whilst the ODE regularization method
achieves a better fit. Unlike the simulation examples in the previous section, where
we know the true ODE parameters, the true parameters in this case are unknown. The
parameter estimates from both methods are therefore fed back into the Lotka–Volterra
system, and we compare the numerical solutions of the ODEs with the original data.
The results are shown in Fig. 9. Bothmethods show reasonable agreement between the
model prediction and the data. The numerical solutions from the RKG3 method have
a better fit for the predator (x1) in panel (a), whereas there is not much of a difference
between both methods for the prey (x2) in panel (b).

123

746 M. Niu et al.

4 Summary

We have described the software implementation of a gradient matching method for
parameter inference in ODEs, based on reproducing kernel Hilbert spaces (RKHS).
The suite of options includes fast schemes based on traditional RKHS regularization,
and more advanced approaches, which are based on time warping and a regulariza-
tion of the interpolant by the ODEs themselves. Parameter estimation uncertainty is
quantified with a method based on the residual bootstrap. All methods are illustrated
on well-established benchmark ODE models from the literature, and we have shown
how the tools can be applied and adapted by the user for parameter inference in their
own ODE systems.

Acknowledgements This work was supported by the EPSRC (EP/L020319/1) and the Wellcome Trust
(204820/Z/16/Z).

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68:337–404
Barber D, Wang Y (2014) Gaussian processes for Bayesian estimation in ordinary differential equations.

In: Proceedings of the 31st international conference on machine learning (ICML-14), pp 1485–1493
Bishop CM (2006) Pattern Recognition and Machine Learning. Springer, Singapore
Calderhead B, Girolami M, Lawrence ND (2009) Accelerating Bayesian inference over nonlinear differ-

ential equations with Gaussian processes. In: Advances in neural information processing systems, pp
217–224

Campbell D, Steele RJ (2012) Smooth functional tempering for nonlinear differential equation models. Stat
Comput 22(2):429–443

Carpenter B (2018) Predator–prey population dynamics: the lotka-volterra model in stan. Pridobljeno
s https://mc-stan.org/users/documentation/case-studies/lotka-volterra-predator-prey.html 28 Aug
2019, p 62

Dondelinger F, Husmeier D, Rogers S, FilipponeM (2013) Ode parameter inference using adaptive gradient
matching with gaussian processes. AISTATS 31:216–228

Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. Chapman and Hall, Boca Raton
FitzHugh R (1955) Mathematical models of threshold phenomena in the nerve membrane. Bull Math

Biophys 17(4):257–278
Gao H, Aderhold A, Mangion K, Luo X, Husmeier D, Berry C (2017) Changes and classification in

myocardial contractile function in the left ventricle following acute myocardial infarction. J R Soc
Interface 14:20170203

González J, Vujačić I, Wit E (2013) Inferring latent gene regulatory network kinetics. Stat Appl Genet Mol
Biol 12(1):109–127

González J, Vujačić I, Wit E (2014) Reproducing kernel Hilbert space based estimation of systems of
ordinary differential equations. Pattern Recogn Lett 45:26–32

King AA, Nguyen D, Ionides EL (2015) Statistical inference for partially observed markov processes via
the R package pomp. arXiv preprint arXiv:1509.00503

123

http://creativecommons.org/licenses/by/4.0/
https://mc-stan.org/users/documentation/case-studies/lotka-volterra-predator-prey.html
http://arxiv.org/abs/1509.00503

R package for statistical inference in dynamical systems. . . 747

Leys C, Ley C, Klein O, Bernard P, Licata L (2013) Detecting outliers: Do not use standard deviation around
the mean, use absolute deviation around the median. J Exp Soc Psychol 49(4):764–766

Liang H, Wu H (2008) Parameter estimation for differential equation models using a framework of mea-
surement error in regression models. J Am Stat Assoc 103(484):1570–1583

Lotka AJ (1920) Analytical note on certain rhythmic relations in organic systems. Proc Natl Acad Sci USA
6(7):410

Macdonald B, Higham C, Husmeier D (2015) Controversy in mechanistic modelling with Gaussian pro-
cesses. J Mach Learn Res 37:1539–1547

Niu M, Rogers S, Filippone M, Husmeier D (2016) Fast inference in nonlinear dynamical systems using
gradient matching. J Mach Learn Res 48:1699–1707

Niu M, Macdonald B, Rogers S, Filippone M, Husmeier D (2017) Statistical inference in mechanistic
models: time warping for improved gradient matching. Comput Stat 33:1–33

Ovaskainen O, de Knegt HJ, del Mar DM (2016) Quantitative ecology and evolutionary biology. Oxford
University Press, Oxford

Pearce T, Leibfried F, Brintrup A (2020) Uncertainty in neural networks: approximately Bayesian ensem-
bling. In: International conference on artificial intelligence and statistics, pp 234–244

Pfister N, Bauer S, Peters J (2018) Identifying causal structure in large-scale kinetic systems. arXiv preprint
arXiv:1810.11776v2

Pokhilko A, Mas P, Millar AJ et al (2013) Modelling the widespread effects of TOC1 signalling on the plant
circadian clock and its outputs. BMC Syst Biol 7(1):1–12

Ramsay J, Hooker G, Campbell D, Cao J (2007) Parameter estimation for differential equations: a gener-
alized smoothing approach. J R Stat Soc B 69(5):741–796

Ruppert D (2010) Statistics and data analysis for financial engineering. Springer, Berlin
Thai MT, Wu W, Xiong H (2017) Big data in complex and social networks. CRC Press, London
Vujacic I, Gonzalez J, Wit E (2015) Reproducing kernel Hilbert Space based estimation of parameters of

systems of ordinary differential equations. Pattern Recogn Lett 45:26–32
Vyshemirsky V, Girolami MA (2008) Bayesian ranking of biochemical system models. Bioinformatics

24(6):833–839

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1810.11776v2

	R package for statistical inference in dynamical systems using kernel based gradient matching: KGode
	Abstract
	1 Introduction
	2 Method
	2.1 Dynamical systems
	2.2 Standard gradient matching
	2.3 Warped gradient matching
	2.4 ODE regularization
	2.5 Warping plus ODE regularization
	2.6 Uncertainty quantification in ODE parameter estimation

	3 Library architecture and examples
	3.1 Defining the differential equations and generating data from them
	3.2 Standard gradient matching
	3.3 Warping gradient matching
	3.4 ODE regularization
	3.5 Warping plus ODE regularization
	3.6 Uncertainty quantification in ODE parameter estimation
	3.7 Effects of the initialization on ODE parameter estimation
	3.8 Real data application

	4 Summary
	Acknowledgements
	References

