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Background
The availability of high-throughput technologies means many studies are increasingly 
producing large-scale untargeted measurements of different biological entities, such 
as transcripts, proteins and metabolites. Combining the diverse set of omics data pro-
duced from different measurement platforms is often required as the initial step of an 
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integrated analysis. Data integration has been shown to reveal stronger findings com-
pared to analysing a single dataset alone, with wide-ranging successes from studying 
the human microbiome to identifying cancer biomarkers [1–3].

Omics integration approaches can be divided into two types: vertical where integra-
tion is performed by using multiple omics data from the same biological sample; and 
horizontal where the integration is performed by mapping shared or related entities 
from different biological samples [4]. One popular approach to vertical integration 
is through matrix factorisation. This includes methods such as Canonical Correla-
tion Analysis (CCA) that finds canonical variables maximally correlated to each other 
from the different omics data, as well as data fusion via tri-matrix factorisation [5] 
that considers the relations and constraints across and within omics, and decomposes 
the data into low-rank matrices that reveal hidden associations. Another example is 
Multi-Omics Factor Analysis (MOFA) [6] that provides a Bayesian model and a robust 
inference scheme to factorise omics data into latent factors explaining the main vari-
ations in the data.

During vertical integration, often it is required for different omics measurements 
from the same sample to be matched. However in some instances, existing data 
cannot be matched in this manner, since not all omics types were measured due to 
limitations in the study. Horizontal integration offers an alternative scheme, where 
integration is performed by mapping shared or related entities from one omic dataset 
to another without requiring for samples to be aligned. Instead biological pathways 
could serve as the shared context onto which entities are mapped.

In recent years, Web-based tools to perform horizontal integration using pathways 
have been gaining popularity. For example MetaboAnalyst [7], considered one of the 
most popular online tools in metabolomics at the time of writing, provides a func-
tionality to map genes and metabolites to metabolic pathways and performs pathway 
enrichment analysis. Another example is 3Omics [8] which accepts human-only tran-
scriptomics, proteomics and metabolomics datasets and performs pathway mapping 
as well as other analyses such as correlation and gene ontology (GO) analyses. Finally 
PaintOmics3 [9] performs a complete integration of multiple data types to KEGG 
pathways, allowing for the enrichment and clustering analyses of pathways, as well as 
network visualisation.

Despite this abundance of tools, data integration remains a challenge due to the 
complexity of the data, and the difficulty in relating analysis results to biological 
interpretations. A common approach employed by many tools is to present an analy-
sis outcome as a complex network graph [7–10]. Networks are visually appealing, as 
unstructured results can be easily rendered as a graph having nodes and edges. Nodes 
represent different biological entities, while the relationships between nodes can be 
flexibly represented by edges that capture different interactions between the nodes. 
However the complexity of a typical multi-omics study means networks can quickly 
grow to a large size, having numerous nodes and edges. When biologists are presented 
with a ‘hairball’ network, deciphering biological meaning and generating hypotheses 
from such outputs can be challenging [11]. A similar challenge is also faced in inter-
preting analysis results presented as long and static (non-interactive) tables.
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Here we introduce GraphOmics, a Web application that accepts measurements 
of transcripts, proteins and metabolites and performs data integration horizontally 
using Reactome [12] as the graph knowledge base. GraphOmics provides an interac-
tive platform that integrates data to Reactome pathways emphasising interactivity and 
biological contexts. This avoids the presentation of the integrated omics data as a large 
network graph or as numerous static tables. Instead each biological entity is mapped 
onto Reactome reactions and pathways using biochemical knowledge, and presented 
in the context of their relationships to other related entities. Interactive explorations 
of linked entities form the centrepiece of GraphOmics, where selecting an entity will 
display other entities related to it. Further analyses such as gene ontology enrichment 
and pathway analysis spanning multiple -omics data can be performed. Finally biolog-
ical conclusions can be annotated in GraphOmics and the results shared with others.

Implementation
Figure  1 provides a diagram of overall GraphOmics functionalities. An initial data 
loading step is performed to get measurements of entities into GraphOmics. As part 
of data loading, the Reactome database is used for mapping of the biological enti-
ties (transcripts, proteins and metabolites) in the uploaded data onto reactions and 
pathways from Reactome. Once data loading is completed, users can perform various 
global analyses, including differential analyses, pathway activity enrichment, principal 
component analyses (PCA), clustering and uni-variate statistical tests for differential 
analyses. To assist in data interpretation, mapped results are shown in multiple inter-
active tables that are linked to each other. Selecting an entry in one table will filter 
entries in other related tables. Groups of related entities can also be created and ana-
lysed within GraphOmics.

Transcripts Proteins Metabolites

Knowledge baseReactome Mapping
Reactions
Pathways

Pathway Activity

PCA

Input

Global Analysis

Differential Analysis

Clustering

Fold-changes

Linked Selection

Data Interpretation

Contextual Info.

Ranking & Filter

Group Analysis

Plotting

GO Enrichment

GraphOmics Functionalities 

Grouping of Related 
Entities

Fig. 1  Overall GraphOmics functionalities. Horizontal integration is performed in GraphOmics by mapping 
transcripts, proteins and metabolites to Reactome’s reactions and pathways. From the platform, global 
analyses can be performed and data interpreted in an interactive manner
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Overall system design

GraphOmics is a Web-based system developed using open-source technologies. The 
client (browser) side is built upon HTML & Javascript, while charting functionali-
ties are provided through libraries such as D3 and Plotly. The server side runs on 
the Django 2 Web framework and the Python 3 programming language. Common sta-
tistical methods such as t-tests and PCA are implemented using the numpy and scipy 
libraries in Python, while differential analyses using DeSEQ2 [13] and limma [14] are 
provided through R. A SQLite database is used to store relational data. A local copy 
of the Reactome knowledge base [12] is downloaded and accessed from the Django 
Web application through a Neo4j graph database.

Data uploading

To begin analysis in GraphOmics, users upload their transcript, protein or metabo-
lite data to the system. Uploaded measurements should be provided as matrices in a 
Comma-separated Value (CSV) format, where the rows are the entity IDs, columns 
are the samples, and entries are the measurements. To facilitate mapping, GraphOm-
ics requires each row to be labelled with the appropriate ID for the omics type. These 
are Ensembl ID for transcripts, UniProt ID for proteins, and KEGG or ChEBI IDs 
for metabolites. There is no limit to the computational allowance or size of measure-
ment CSV that can be uploaded, however from our experience about 100 - 200 sam-
ples are reasonable size, beyond which slowness could be encountered when using 
GraphOmics.

GraphOmics also requires information on the assignment of samples to experimen-
tal groups. Users can specify this by including into the measurement CSV a second 
row that begins with the label ‘group’, where the column values are the group assign-
ments. This information can also be provided in a separately uploaded design CSV, 
where the first ‘sample’ column specifies the sample name and the second ‘group’ col-
umn the grouping information. Other experimental conditions could be included as 
additional columns in the file.

Differential analysis results from outside GraphOmics can also be included dur-
ing upload. This takes the form of additional fold-changes and statistical significance 
(p values) columns in the measurement CSV. Here the column names take the for-
mat of FC_[group1]_vs_[group2] for fold change information, and padj_
[group1]_vs_[group2] for p values, with [group1] and [group2] referring 
to the different experimental groups. For more details on the input format, please 
refer to Supplementary S1.

Omics integration

Horizontal integration of the uploaded data is performed through an automated map-
ping procedure written in Cypher (the graph query language used in Neo4j). This 
retrieves the connections between transcripts, proteins, metabolites to reactions and 
pathways of the given species in Reactome, constructing a network graph of entities, 
reactions and pathways involved in the dataset. Entities in this network graph are 
connected to one another: transcripts are linked to the proteins they encode, proteins 
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and compounds are linked to the reactions they are involved in, and reactions are 
linked to the pathways that contain them.

Mapping is done using Reactome based on the species that users selected during data 
upload. The list of species is currently limited to the 84 species that Reactome supports 
(database version 77) at the time of writing. Mapping coverage in GraphOmics could 
grow as Reactome is regularly updated to incorporate more species and biological enti-
ties. Once mapping is completed, the results are stored in the SQLite database and pre-
sented to users in the Linked Data Browser. GraphOmics uses other databases such as 
Ensembl, Uniprot, ChEBI and KEGG; these are not used for mapping, but instead are 
used to retrieve additional contextual information about selected entities in the Info 
Panel.

Linked data browser

The Data Browser is the primary interface in GraphOmics that facilitates linked explora-
tion of the integrated data. Instead of presenting an often-massive network graph, the 
main components of the Data Browser are five interactive tables: one for each supported 
omics type (transcripts, proteins and metabolites) as well as for reactions and pathways 
(Fig. 2).

Transcripts Proteins

Metabolites

Reactions

Filters

Filters

Filters

Filters

Pathways

Selection 1

Selection 2

Fig. 2  Data browser in GraphOmics. The Data Browser in GraphOmics facilitates linked explorations of 
multi-omics data. Transcripts are linked to the proteins they synthesise. Proteins and metabolites are linked 
by reactions they are involved in. Reactions in turn are linked to Pathways that contain them. Entries in all 
tables can be selected by clicking on them. Selections are used to filter entries in other linked tables. Multiple 
tables can be selected in turn to define a flexible filtering criteria. For example, selecting the three pathways 
(Selection 1) will filter for reactions, proteins, metabolites and transcripts that are connected to the selected 
3 pathways. If the user subsequently selects two metabolites (Selection 2) from the filtered results, the 
results are further filtered to include only transcripts, proteins and reactions connected to the two selected 
metabolites under the 3 initially selected pathways. Each table can also be searched, sorted and filtered 
according to their fold changes and p values. Blue circles next to the entity name indicate measured entities
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Users interact with the Data Browser by navigating through the tables. Clicking an 
entity in the Data Browser selects it, and multiple entities can be selected in this man-
ner. Selections from one table will filter entries in other tables, such that only connected 
items are shown according to the links between entities. As more entities of different 
omics types are added to the current selection, the number of entities displayed across 
tables are reduced to meet the filtering criteria.

In this manner, users can explore the data starting from a global view where all entities 
are shown, and successively narrowing down to more specific entities that are related to 
the selected items. This ‘drill-down’ interactivity in the Data Browser could help reveal 
the relationships among biological entities of interest and their reactions and pathways 
across omics.

In the case where users explore the data with no particular features in mind, GraphO-
mics allow users to perform differential analyses to highlight significantly changing enti-
ties, as well as pathway activity analyses to highlight potentially interesting biological 
processes. This generates an initial list of significantly changing features, which could be 
ranked by fold changes and p values from the Data Browser. Significant features could 
now be explored in relation to active pathways (from pathway analysis), and in relation 
to clustering with other significant features in the integrated Clustergrammer views. 
This provides a starting point for hypothesis generation.

Contextual information panel

Selected entries in the Data Browser are also associated to contextual information under 
each table (Fig. 3). This includes plots of the measurements of that entity across condi-
tions as well as links to external databases (Fig. 3a, b). For transcripts, the Harmonizone 
Web service [15] is used to retrieve additional description for the gene, as well as links 
to Ensembl and GeneCard. For proteins, the name, catalytic activity, pathways, gene 
ontology terms, and links to Uniprot and Swiss-Model of the currently selected proteins 
are displayed. For compounds, information on the KEGG and CheBI IDs, formula and 
SMILES string, as well as links to their respective databases, and also compound struc-
tures are retrieved. For reactions and pathways, a desriptive summary is displayed by 
querying Reactome (Fig.  3c). Additionally an interactive pathway viewer utilising the 
Reactome Pathway Diagram Viewer (DiagramJS) is also available (Fig.  3d). Measured 
values of transcripts, proteins and metabolites can be overlaid on top of the interactive 
pathway diagrams.

Ranking and filtering

All interactive tables in the Data Browser allow entities to be ranked and sorted accord-
ing to their fold changes and p values. This can be used to explore the most significantly 
changing entities across omics that are differentially expressed (DE). In conjunction 
with linked interactions, the interface allows users to easily navigate through the top DE 
entities from one omics and inspect if they are linked to DE entities from other omics. 
Entities are also connected to pathways, which can be subjected to enrichment analy-
sis within GraphOmics. In this manner, users can easily rank DE entities and deter-
mine which enriched pathways they are connected to. Additionally the Query Builder 
in GraphOmics allows for complex queries to be defined on the data (Fig.  4). From 
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the Query Builder, a query can be defined using comparison operators to filter entities 
by their p values and fold changes. Queries spanning multiple omics data can also be 
defined by concatenating (performing a logical AND operation) of each constituent sin-
gle-omics query.

Creating and analysing groups

GraphOmics allows for any set of entities that have been selected by users to be saved 
as a selection group. These groups can later be loaded for future use. A group of related 
entities (for instance the top DE entities, or members of a cluster or some pathways of 

Fig. 3  The info panel in GraphOmics. The info panel provides additional contextual information for selected 
entries in the Data Browser. (a) An example info panel entry for the transcript identified by the gene Aldh1a2, 
as well as (b) its measurements if available. Entities and pathways can be annotated by clicking on the 
Annotate button in the Info Panel. (c) An example info panel entry for the Tyrosine catabolism pathway. 
Clicking the Show Pathway button displays (d) an interactive pathway diagram via DiagramJS, with either 
Reactome ORA results or expression data mapped onto it

Fig. 4  The query builder in GraphOmics. The Query Builder is used to filter entities of data tables by 
specifying rules that will be concatenated using a logical AND operator. In this example, a query is 
constructed to filter for transcripts and proteins that are both statistically significant (p values less than 0.05) 
and having transcript fold changes at least 0.5 both ways
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interest) can be defined, saved and loaded for future analysis. Selection groups can be 
easily visualised and plotted. For transcriptomics data, gene ontology analysis can be 
performed using the Python package GOATools [16] to discover enriched GO terms 
associated with a group. Additionally interactive heatmaps and clustering analysis using 
Clustergrammer can also be performed on any group. Finally users can annotate groups 
on the GraphOmics platform for reporting purposes.

Global analysis of multi‑omics data

Differential expression analysis

A common task in omics data analysis is to find entities that are differentially expressed 
(DE) across different experimental conditions. If users have performed their own DE 
analysis, the statistical significance (p values) of entities could be uploaded as part of 
the data loading process. Otherwise from the Inference page in GraphOmics, users can 
execute standard uni-variate t-tests (with Benjamini-Hochberg procedure for control-
ling the false discovery rate). Additionally, widely-used methods such as DeSEQ2 and 
limma can also be run as an option. The resulting statistical significance from perform-
ing DE analyses are shown in the interactive tables of the Data Browser, alongside the 
entity names and measured values.

Interactive clustering and heatmap

Heatmap visualisation is performed using Clustergrammer [17], a Web component that 
integrates interactive heatmap and hierarchical clustering to visualise high-dimensional 
biological data. Clustergrammer provides many interactive features to explore a hierar-
chically clustered heatmap, including navigational features such as zooming and pan-
ning, as well as filtering features to search and select entities.

The interactivity of Clustergrammer makes it suitable for integration with GraphOm-
ics as it works in concert with the Data Browser. Each omics type (transcripts, proteins 
and metabolites) in the Data Browser is associated to a Clustergrammer component 
(Fig. 5). Clustergrammer was modified such that selecting entities in the Data Browser 
also performs the same selection in the corresponding Clustegrammer component, and 
vice versa.

Clustergrammer integration means users can generate a heatmap and perform clus-
ter analysis for any selections in the Data Browser. For instance, this includes the ability 
to display the heatmap of entities in a pathway (or in several pathways), or to discover 
the clusters of proteins and metabolites linked to top DE transcripts. The interaction 
also goes the other way, such that selecting a cluster in Clustergrammer also selects its 
member entities in the Data Browser. This allows users to examine the DE members of a 
cluster and their connections to reactions and pathways.

Principal component analysis

PCA can be used to assess the global similarity of samples across different conditions. In 
GraphOmics, a PCA analysis is created from the Inference page by selecting the omics 
type and the number of components to use. The results from PCA analysis include plots 
of the projected samples for the first two principal components, as well as a scree plot 
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showing the percentage of variance explained by the different components. The latter 
plot can be examined to determine how many components to retain for analysis.

Pathway activity analysis

Enrichment of a pathway often suggests relevant biochemical activities happening in 
that pathway. In GraphOmics, pathway activity analysis can be performed by consider-
ing a single omics dataset separately, or from multiple omics datasets at once. To priori-
tise changing pathways in single omics data, we developed a Python library named PALS 
[18] that presents a unified wrapper to the following algorithms: Over-representation 
Analysis (ORA); Gene Set Enrichment Analysis (GSEA) [19]; and Pathway Level Analy-
sis of Gene Expression (PLAGE) [20]. Originally developed for metabolomics, PALS was 
extended in GraphOmics to be able to also deal with transcript and protein data.

The three pathway ranking methods in PALS represent a diverse approach to enrich-
ment analysis. ORA is widely used to assess the probability of over-representation of 
DE entities in a pathway using the Hypergeometric test. GSEA is considered a ‘second-
generation’ method that takes into account the correlation between sets of entities to 

Transcripts 
(Clustergrammer)

Selection

Transcripts (cropped)

Proteins (cropped)

Metabolites (cropped)

Filters

Filters

Selects

Transcripts (Data 
Browser)

Filters

Pathways

Proteins

Reactions

Metabolites

Other tables in the 
Data Browser

(A) (B)

(C)

(D)

(E)(F)

Fig. 5  Clustergrammer integration in GraphOmics. (a) Clustergrammer displays a hierarchically-clustered 
interactive heatmap, where clusters can be selected at any level of the dendrogram. For example, here we 
show an example Clustergrammer component for the Zebrafish transcriptomics data. (b) Selecting a cluster 
in the Clustergrammer will display a cropped view of that data. For example, here we show an example 
cropped Clustergrammer showing only transcripts in the currently selected cluster. (c, d) Entities in related 
Clustergrammers are also filtered according to their relationships to the selected entities. (e) Entities in the 
selected cluster are also selected in the corresponding Data Browser table. (f) This in turn will filter other 
related tables in the Data Browser. The selection process can also be performed in reverse such that selecting 
entities in the Data Browser also filters the linked Clustergrammers (going backward from E to A in the 
diagram)
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assess DE pathways. Finally PLAGE is a method based on singular value decomposition 
which was found to be best performing [21] in returning the highest detection of chang-
ing pathways.

From the Inference page, users can choose to run any of these methods on the 
GraphOmics server. For any of the pathway ranking methods, the p values of signifi-
cantly changing pathways are collected and displayed with pathway names in the Data 
Browser. This allows pathways to be ranked, sorted and filtered in the same manner as 
entities.

Multi‑omics pathway activity analysis

GraphOmics offers a way to perform pathway analysis separately on each omics, and 
integrate the results at the end. The separate pathway analysis results run on differ-
ent omics datasets and can be combined with an AND operator in the Query Builder. 
For instance from the Query Builder, users can easily filter pathways that are signifi-
cantly changing based on the transcriptomics AND proteomics AND metabolomics 
measurements.

For a different approach that considers multiple omics data together during analysis, 
users can run the Reactome Analysis Service, which offers a high-performance multi-
omics over-representation analysis using the Reactome server [22]. The IDs of DE enti-
ties (across multiple omics) are selected according to a user-defined threshold on the p 
values, which defaults to ≤ 0.05 . The collected IDs of DE entities are sent to the Reac-
tome Analysis Service, which performs pathway analysis through ORA on the Reactome 
server. An analysis token is returned, and the results of DE pathways and their p values 
are retrieved in GraphOmics and displayed on the Data Browser for sorting and filter-
ing. Note that Reactome will delete a submitted analysis on their server after a period of 
inactivity (7 days). In this case, users could resubmit the analysis from GraphOmics to 
Reactome to generate updated Reactome links that work.

Exporting of results

GraphOmics allows users to export the mapping results of all entities, as well as their 
corresponding secondary information (reactions and pathways, p values, fold-changes). 
For tabular results, this can be accomplished by clicking on the Export button in the 
respective tables of the Data Browser. Results from interactive heatmap and clustering 
could also be exported by clicking on the ‘Take snapshot’ button in each Clustergram-
mer component.

Results
Comparison to other multi‑omics systems

A comparison of GraphOmics to several other popular Web-based multi-omics systems, 
namely MetaboAnalyst [7], 3Omics [8] and PaintOmics3 [9], is provided in Table 1. All 
systems evaluated provide functionality to map a list of identifiers and associated meas-
urements to pathways. GraphOmics relies on the Reactome database, while the others 
use KEGG. 3Omics is limited to the analysis of human data only, while the other systems 
evaluated, including GraphOmics, can handle many species. All systems provide a way 
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to rank and prioritise relevant pathways using either single or multiple omics datasets. 
ORA appears to be the most common method for ranking pathways, although Meta-
boAnalyst provides an option that considers the topology of pathways during analysis. 
Additionally 3Omics provides mugh functionality not directly related to pathways, such 
as correlation analysis, that could be useful in revealing interesting biological entities.

Both MetaboAnalyst and 3Omics generate analysis results as static tables and graphs. 
The large amount of non-interactive results produced by MetaboAnalyst and 3Omics 
could potentially be difficult for users to navigate. PaintOmics3 could be considered 
closest to GraphOmics in interactive functionality. Analysis results are presented in 
PaintOmics3 as a sorted interactive table or as a network graph of pathways, with nodes 
representing significant pathways and edges drawn based on their linked biological pro-
cesses. ‘Painting’ a pathway reveals additional information for that pathway, including 
the pathway diagram and an interactive heatmap showing measured values. PaintOm-
ics3 also offers a novel analysis where pathways with similar trends can be clustered. 
Clustering results are overlaid on the network graph to reveal groups of pathways with 
similar changes.

GraphOmics differs in several key aspects when compared to PaintOmics3: our inter-
face allows data explorations to begin from any entity of interest (for instance starting 
from the top DE transcripts), while in PaintOmics3 explorations are centered around 
DE pathways as the starting point. The linked views in GraphOmics reveal the explicit 
individual connections between all connected entities for easy inspections, while in 
PaintOmics3 these connections are summarised as edges between pathways in the net-
work graph. From the Information Panel, GraphOmics displays more contextual infor-
mation for each selected entity than PaintOmics3. Integration with Clustergrammer also 
means any clusters of entities can be identified and visualised as heatmaps, and their 
connections to others displayed in the Data Browser. This is a capability not present in 
PaintOmics3.

Table 1  A comparison of GraphOmics to other Web-based multi-omics systems

Tool Database Omics types Analysis types Results presentation

GraphOmics Reactome Transcripts
Proteins
Metabolites

Pathway enrichment: ORA, 
GSEA,
PLAGE, reactome analysis 
service
GO enrichment

Interactive tables
Interactive pathway 
diagrams
Interactive heatmaps
Interactive clustering

MetaboAnalyst KEGG Genes
Metabolites

Pathway enrichment: ORA, 
Topology

Static tables
Static pathway diagrams

3Omics KEGG (human only) Transcripts
Proteins
Metabolites

Correlation analysis
Coexpression profiles
Phenotype analysis
Pathway enrichment (ORA)
GO enrichment

Static tables
Static pathway diagrams
Static heatmaps

PaintOmics3 KEGG Transcripts
Proteins
Metabolites
DNase-seq
miRNA-seq

Pathway enrichment (ORA)
Clustering of pathways

Interactive tables
Interactive pathway 
diagrams
Interactive heatmaps
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Zebrafish case study

Using a public Zebrafish dataset [23], we demonstrated how biological insights could be 
gained through data integration and interactive explorations in GraphOmics. The aim of 
the original study was to uncover relevant biomarkers that regulate patterned regenera-
tion in Zebrafish fins. This process is regulated by positional memory allowing cells to be 
regenerated at their previous locations before injury.

Data loading and pre‑processing

The processed transcriptomics, proteomics and metabolomics data from the original 
study was retrieved. For each omics type, a measurement CSV was created where rows 
corresponded to the entities and columns were the samples. Each row was identified by 
a unique identifier column, with ENSEMBL gene ID, UniProt ID and KEGG ID used 
for identifying transcripts, proteins and metabolites respectively. Positional memory 
is established by molecules that exist in a gradient along the uninjured appendages, so 
the measured samples were divided into three experimental conditions according the 
proximity in the fins where the sample was obtained: proximal, middle and distal (with 
proximal the closest to the torso and distal the furthest). Following the original study, we 
focused on the comparison of distal-vs-proximal where the largest differences could be 
seen.

CSV files for the multi-omics Zebrafish data was uploaded to GraphOmics. Auto-
mated mapping was performed by GraphOmics, resulting in 8690 transcripts linked to 
8010 proteins and 462 compounds across 6995 reactions and 1272 Reactome pathways. 
The original processed transcriptomics data already contained DeSEQ2 analysis results 
comparing distal to proximal which were retained during upload and used as the DE 
results for the transcripts. This demonstrates how additional analysis from an external 
workflow could be easily incorporated into GraphOmics.

Differential expression analysis is often used to highlight significantly changing enti-
ties that could be of biological interest. From the original study, DE results were already 
available for the transcripts and so they were used. For the protein and metabolite data, 
we employed limma to perform the DE analyses of proteins and metabolites. PLAGE 
was used to perform DE analysis of pathways using each omics data separately as the 
input, resulting in different sets of p values for each pathway depending on the source 
data used. This was all performed from the Inference tab in GraphOmics. All results 
from DE analysis in form of p values and fold-changes (if available) are displayed in the 
Data Browser alongside the entities.

Interactive omics exploration of the zebrafish data

Here we showed how GraphOmics easily characterised the set of DE transcripts 
linked to DE proteins. This could be used to identify the important transcripts and 
proteins that are involved in establishing positional memory of zebrafish. The fol-
lowing query was formulated from the Query Builder: filter for transcripts and pro-
teins with a threshold of 0.05 on the p values, and having at least ±0.5 on the log 
fold changes of the transcripts (Fig. 4). The results were a selection of 87 transcripts 
and their corresponding proteins, as well as 21 compounds involved in reactions 
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catalysed by those proteins. Note that the automatic mapping approach in GraphOm-
ics revealed 11 out of the 32 DE transcripts linked to DE proteins in the original study 
in [23]. Among the DE transcripts found in agreement with the original study were 
the gene aldh1a2 which catalyses the synthesis of retinoic acid, as well as muc5.2 
found to be retained in both uninjured and early stages of injuries. Both genes were 
hypothesised in the original study to be involved in establishing positional memory in 
zebrafish.

To characterise important biological processes of the DE transcripts, a selec-
tion group consisting of the 87 transcripts was created and subjected to gene ontol-
ogy analysis using Goatools. Notably the GO term oxidation-reduction process 
(GO:0055114) was found to be significantly-enriched in the top-4 GO results for bio-
logical processes (p value ≤ 0.05). Oxidation-reduction reactions are crucial for cell-
growth and signalling and could play an important role in cellular regeneration [24]. 
Among the genes that contributed to this GO term were aldh1a2, as well as the genes 
pah and hgd. These were found in our results to be significantly changing in both the 
transcript and protein levels. The differential expression of pah and hgd at the pro-
tein level are consistent with existing literature [25], but from linked explorations, we 
observed that both pah and hgd were also DE at the transcript level. The results here 
could be investigated to gain further insights into the regulation mechanism of those 
genes.

Inspecting the linked Clustergrammer heatmaps of the DE transcripts and proteins 
(Supplementary Figure S2), clear block structures could be observed across the dis-
tally-enriched and proximally-enriched entities. These are the transcripts and pro-
teins that could potentially contribute to patterned regeneration in zebrafish tissues. 
The clustering structure in the linked compounds are less clear, suggesting that the 
relationship between transcript and protein expression to metabolism during regen-
eration is a complex process. For more details, refer to Supplementary Figure S2

Analysing enriched metabolic pathways in zebrafish

The original study [23] did not perform any pathway analysis. Using GraphOmics we 
investigated which metabolites and pathways contribute to positional memory and 
possibly regeneration. The Query Builder was used to filter for DE metabolites (as 
determined by limma) that are also linked to highly active pathways (as determined 
by PLAGE). A threshold of ≤ 0.05 was used on the p values of both DE metabolites 
and pathways. This resulted in 45 DE metabolites spread across 57 DE pathways, 
listed in Supplementary Table  S3. Among the significant pathways of interests are 
Alanine metabolism which makes sense as both alanine and glutamate were DE in 
the data. Consistent with the original study, Arginine is observed to be producing the 
largest DE amongst the significant compounds, alongside other compounds like glu-
tamine and leucine. These are explained in the original study as promoting wound 
healing and encouraging cellular growth [23].

To obtain descriptive terms that characterise the overall biological processes of 
these metabolic pathways, we performed GO analysis on the 236 DE transcripts 
(p values ≤ 0.01 and log fold changes at least ±0.5 ) that are linked to these DE 
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compounds and pathways. The first two most significant biological process GO terms 
include G protein-coupled receptor signaling pathway (GO:0007186) and signal trans-
duction (GO:0007165), showing that the activity level of signalling pathways are high. 
The findings here support the hypothesis in the original study on the influence of sig-
nalling pathways towards positional memory.

Covid‑19 case study

Understanding the Covid-19 disease on the molecular level through omics technologies 
could potentially offer new insights leading to the nature of the SARS-CoV-2 virus and 
the development of new treatments. Here we demonstrated how GraphOmics could be 
used to analyse and interactively explore the integrated results from a dual-omics (pro-
teomics and metabolomics) study on the sera of Covid-19 patients [26]. The purpose of 
this case study is to demonstrate how the discovery process in the original study could 
be easily reproduced in GraphOmics. To do this, we will highlight interesting and rel-
evant features from the original study, and demonstrate how they could be easily discov-
ered in GraphOmics.

Data loading and pre‑processing

The original study aimed to characterise the proteome and metabolome of a cohort of 
28 severe Covid-19 patients in comparison to a cohort of 28 healthy patients. Processed 
protein and metabolite data from the original study were retrieved. The protein data was 
provided in a format acceptable to GraphOmics (with rows identified by their UniProt 
ID) and could be readily uploaded. For metabolite data, each compound was identified 
by its chemical name in the original data. An automated script (available from our repos-
itory) was created to map from compound names to KEGG ID using the Bioservices 
library [27]. Of the 905 names present in the original data, 220 could be matched based 
on matching by exact chemical names alone. This represented the majority of amino 
acids discussed in the original study, although it left out many lipid, steroid hormones 
and other chemicals that could not be easily mapped to KEGG and Reactome based on 
matching by exact chemical names alone.

Similar to the previously analysed Zebrafish data, DE analysis were performed on the 
Covid19 protein and metabolite data using limma, while PLAGE was used to analyse 
pathway activity levels on both omics types.

Interactive omics exploration of the Covid19 data

Once the initial data integration has been performed in GraphOmics, users could 
interactively explore the data to reveal biologically relevant hypotheses. Firstly to dis-
cover significantly changing entities, the Query Builder was used to filter for DE pro-
teins (defined in the original study as having p values ≤ 0.05 and log fold changes at least 
±0.25 ), linked to pathways that were also significantly changing (p values ≤ 0.05) based 
on the protein data. This resulted in 139 proteins connected to 86 pathways, detailed in 
Supplementary Table S4.

Among the significant pathways in the results, two were related to the activation of the 
complement system, including Terminal pathway of complement (R-HSA-166665) and 
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Alternative complement activation (R-HSA-173736). Note that while pathway analysis 
in the original study was performed using a completely different proprietary software 
[IPA, 28], our results are in agreement with how the complement system was activated 
in the severe case in response to pathogens. Additionally the original study thoroughly 
discussed the high activity level of the Platelet degranulation (R-HSA-114608) pathway. 
This was also found to be significant in our results, and it could be explained by how 
platelets produced in the lung were activated in response to lung injury in the severe 
patients. All these significant pathways and their connections to DE entities can be 
browsed through GraphOmics.

We further illustrated how GraphOmics could identify other significant entities that 
are linked to those groups of DE proteins discovered above. Keeping the same filtering 
criteria, we selected the Platelet degranulation pathway from the Data Browser. This 
selected the DE proteins linked to that pathway and all their related entities. From the 
corresponding Clustergrammer view, two clusters of proteins that are either up-regu-
lated or down-regulated in the severe-vs-healthy comparison could be observed (Sup-
plementary Figure S5). The protein P02776 (for gene Platelet Factor 4, or PF4) was a 
member of the down-regulated cluster. The presence of PF4 in the down-regulated 
cluster was interesting because changes to PF4 was noted in the original study to be a 
prognosis marker in severe acute respiratory syndrome [29]. Its down-regulation in the 
severe group could support this hypothesis. Cropping this cluster in Clustergrammer 
resulted in a selection of the 17 member proteins and their connections to compounds, 
reactions and pathways in the Data Browser. This could be inspected to reveal addi-
tional relationships between entities. For example, the original study highlighted how 
serotonin level decreases with increasing severity of the disease as serotonin was trans-
ported to platelet for storage. The connection of serotonin to Platelet degranulation and 
to members of this cluster, and the down-regulation of serotonin could be interactively 
seen and explored from the Data Browser.

Finally we investigated the metabolomics data by filtering from the Query Builder for 
DE metabolites linked to DE pathways (p values ≤ 0.05 for both). This resulted in 45 sig-
nificant metabolites linked to 93 significant pathways. Examining the resulting metabo-
lites, two clusters, one showing an up-regulation trend in the severe cohort, and one with 
down-regulation trend could be observed from Clustergrammer (Supplementary Figure 
S6). The first cluster contained kynurenine and NAD+. Its up-regulation was explained 
in the original study by the activation of kynurenine pathways in severe patients due 
to macrophage responses. The second down-regulated cluster contained many amino 
acids such as histidine, arginine, proline, and many others. Its down-regulation had been 
hypothesised in the original study to be due to damage to the liver from the disease.

Discussion and conclusions
In this work, we introduced GraphOmics, a Web application that could be used to 
explore and integrate biological data from the transcriptome, proteome and metabo-
lome domains. Integration is achieved horizontally by mapping relevant biological enti-
ties to reactions and pathways from Reactome. Once mapping has been established, 
GraphOmics allows users to interrogate the data and interactively explore the connec-
tions between entities in the context of Reactome pathways.
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To guide this exploration process, GraphOmics allows users to run several com-
mon global analyses, including differential expression and pathway activity analy-
sis that prioritise DE entities in the data based on how they change across different 
experimental conditions. More interestingly, the connections between DE entities 
could also be explored and queried interactively within GraphOmics. The close inte-
gration between the Data Browser and interactive clustering and heatmaps in Clus-
tergrammer means different views on the same data are synchronised to one another. 
This allows for integrated analysis where for instance, clustering results can be easily 
examined in the context of pathway activity levels.

Based on Reactome, GraphOmics supports as many species as Reactome offers. 
This is an advantage compared to other tools such as 3omics that supports human 
data only. Other tools like MetaboAnalyst and PaintOmics3 support many species 
too, but they lack the easy inter-connectivity of results and close integration between 
multiple views in GraphOmics. As Reactome continues to grow, the knowledge base 
of GraphOmics also expands. Upgrading Reactome is as easy as pointing the GraphO-
mics server to an updated instance of the database.

As shown by the case studies on two complex multi-omics Zebrafish and Covid19 
datasets, GraphOmics could be used to rapidly reveal interesting biological insights 
and potentially suggest relevant hypotheses. The first case study highlighted how 
users could use GraphOmics to find differentially expressed transcripts, proteins and 
metabolites involved in the caudal fin regeneration of zebrafish in agreement with the 
original study. Using the Covid19 data, we also demonstrated how users could use 
GraphOmics to reveal DE entities and pathways that were significantly changing in 
light of the disease. Here the results from GraphOmics were found consistent with 
findings in the original study. It is worth emphasising that throughout this entire pro-
cess, omics data investigation and exploration in GraphOmics were performed inter-
actively through the Web interface and did not require users to write manual R scripts 
for data analysis, as was done in the original studies.

A weakness of GraphOmics is the requirement for entities to be identified and 
mapped to their IDs before they can be processed. While this requirement is more 
standard for transcript and protein data, it could be a challenge in metabolomics 
where a single compound could be associated to many chemical names and under 
different ID schemes. Additionally the uncertainty of peak annotations means a 
vast majority of metabolites in an untargeted study are not identified or could only 
be identified with a low level of confidence [30, 31]. This is a weakness of nearly all 
tools that map metabolomics data to pathways. After the initial upload step, tools 
like MetaboAnalyst and PaintOmics3 display a screen for users to manually inspect, 
validate metabolite identities and delete duplicate annotations if they were present. 
This is functionality that could be added to GraphOmics. Additionally, methods like 
Mummichog [32] and PUMA [33] that combine metabolite annotation and pathway 
activity prediction steps together to increase confidence in the results could also be 
incorporated into GraphOmics.

Finally the integration approach in GraphOmics is currently restricted to only 
known entities and connections in Reactome. In the late integration approach 
adopted by GraphOmics, it is possible to miss the correlated entities that could have 
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been discovered in an early integration scheme. To find the connections between 
unknown entities not present in the knowledge-base, methods such as correlation 
analysis, Bayesian analysis (e.g. MOFA [6]), and other forms of latent factor analysis 
including clusterings of multi-omics data [34, 35] could be employed. In the future 
we plan to extend GraphOmics to support factor-based analyses. This paves the way 
towards a platform that integrates data both horizontally (sharing common features) 
as well as vertically (sharing common samples) and presents the results in a truly inte-
grated manner.
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