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ABSTRACT 1 

Selfing plant lineages are surprisingly widespread and successful in a broad range of 2 

environments, despite showing reduced genetic diversity, which is predicted to reduce their 3 

long-term evolutionary potential. However, appropriate short-term plastic responses to new 4 

environmental conditions might not require high levels of standing genetic variation. In 5 

this study, we tested whether mating system variation among populations, and associated 6 

changes in genetic variability, affected short-term responses to environmental challenges. 7 

We compared relative fitness and metabolome profiles of naturally outbreeding 8 

(genetically diverse) and inbreeding (genetically depauperate) populations of a perennial 9 

plant, Arabidopsis lyrata, under constant growth chamber conditions and an outdoor 10 

common garden environment outside its native range. We found no effect of inbreeding on 11 

survival, flowering phenology or short-term physiological responses.  Specifically, 12 

naturally occurring inbreeding had no significant effects on the plasticity of metabolome 13 

profiles, using either multivariate approaches or analysis of variation in individual 14 

metabolites, with inbreeding populations showing similar physiological responses to 15 

outbreeding populations over time in both growing environments. We conclude that low 16 

genetic diversity in naturally inbred populations may not always compromise fitness or 17 

short-term physiological capacity to respond to environmental change, which could help to 18 

explain the global success of selfing mating strategies. 19 

 20 

Key words: Arabidopsis lyrata, inbreeding, selfing, genetic variation, metabolomics, 21 

plasticity22 
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BACKGROUND 23 

Genetically informed conservation management programmes often assume that 24 

adaptive potential is limited by the amount of additive genetic variation maintained in a 25 

population [1]. Inbreeding is predicted to compromise long-term evolutionary potential 26 

through several mechanisms: the erosion of genetic variation, the reduced efficacy of 27 

selection [e.g. 2], and inbreeding depression due to both the increased phenotypic 28 

expression of deleterious recessive mutations [3, 4] and the loss of heterozygote advantage 29 

following increased homozygosity [5]. Selfing (inbred) lineages are thus predicted to show 30 

reduced long-term potential to adapt to environmental change and higher extinction rates 31 

than related but more genetically variable self-incompatible (outcrossed) lineages [2]. 32 

However, self-fertilising plant species are often geographically widespread and even 33 

invasive [6, 7], and selfing can be advantageous when reproducing in a new environment 34 

where conspecifics are scarce [8], suggesting that high levels of genetic diversity may not 35 

be required for appropriate responses to new environments.  36 

One explanation for this pattern is that neutral genetic variation may not always 37 

predict adaptive genetic variation and therefore the evolutionary potential of a population 38 

[9]. Supporting this, even highly endangered species sometimes show adaptation despite 39 

extremely low levels of genome-wide variation [reviewed in 1]. Purging of genetic load in 40 

highly inbred lineages can also reduce the impacts of inbreeding depression at the 41 

population level [4, 10]. However, few studies have directly tested the effects of the 42 

resulting low additive genetic variation on short-term plastic responses to new 43 

environments.   44 

Experimental laboratory studies using artificially-induced inbreeding suggest that 45 

the negative effects of inbreeding on trait plasticity may be most apparent under stressful 46 

environments [11]. For example, inbred families or experimental lines show reduced 47 

survival under extreme temperature stress [12], reduced tolerance to herbivores [13], and 48 

reduced induction of anti-herbivore defence traits [14, 15]. Recent work on the molecular 49 
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basis of inbreeding effects has revealed altered gene expression patterns associated with 50 

artificially inbred lines, as well as interactive effects of environmental stress and 51 

inbreeding on both gene expression [16] and particular metabolites [17]. However, other 52 

studies suggest that there is no general relationship between stress intensity and inbreeding 53 

depression; specific types of stressors and environmental novelty may instead increase 54 

phenotypic variability and therefore inbreeding depression [18]. Furthermore, in other 55 

experiments, the effects of inbreeding on trait plasticity were either not observed [19], or 56 

were not consistent across inbred families or traits [13, 20]. So, even experimental 57 

inbreeding in outcrossing species, when the effects of inbreeding depression should be 58 

greatest, might not compromise trait and physiological plasticity. To date though, few 59 

studies have examined the consequences for trait plasticity of natural mating system 60 

variation within species. We know far less about how populations with a sufficiently long 61 

history of inbreeding to purge deleterious recessive mutations will be able to adapt to 62 

changing environmental conditions.   63 

To address this, we tested how natural mating system variation in the perennial 64 

herb Arabidopsis lyrata impacts short-term physiological responses to abrupt 65 

environmental change. Arabidopsis lyrata is distributed across the Northern hemisphere 66 

and although exclusively outcrossing in Europe (subspecies A. l. petraea), shows extensive 67 

variation in mating system around the Great Lakes region in North America (subspecies A. 68 

l. lyrata) [21-23]. North American populations show significantly reduced genetic 69 

diversity compared to European populations, suggestive of a historical bottleneck [24, 25], 70 

but heterozygosity is further reduced in inbred compared to outcrossed populations within 71 

North America [23, 26]. Patterns of population genetic structure suggest that the loss of 72 

self-incompatibility occurred multiple times during several independent postglacial 73 

colonisations of the Great Lakes region [23], but the lack of substantial changes in floral 74 

morphology predicted to be associated with the evolution of a selfing phenotype [27] 75 

suggests that these transitions were very recent. Instead, variation in floral morphology 76 
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was often better explained by postglacial genetic structure (and associated genetic drift) 77 

than mating system [27], suggesting that population-level factors such as phylogeographic 78 

history and broad environmental gradients, may be important for explaining trait variation 79 

in this species.  80 

Strong inbreeding depression in growth and germination-related traits, as well as 81 

altered patterns of gene expression under stable environmental conditions, has been 82 

observed for experimentally-inbred European populations [28-30]. By contrast, both 83 

outcrossing and inbreeding populations from North America show more subtle fitness 84 

reductions in response to experimental inbreeding when grown in a stable environment 85 

[30] or outdoor common garden environments [31, 32], suggesting some purging of the 86 

genetic load. Even when challenged by herbivores, inbreeding depression in defence traits 87 

was low for populations of either mating system [33, 34]. Previous physiological studies in 88 

A. l. petraea have revealed variation in metabolite profiles and cold tolerance responses 89 

among and within populations from different geographic regions [35-37], although 90 

metabolomic divergence was mostly independent of population genetic structure [36]. Yet, 91 

these analyses were restricted to European outcrossing populations, so the effects of 92 

natural variation in inbreeding on physiology remain untested. North American A. l. lyrata 93 

is therefore a good model to assess the impacts of inbreeding-associated loss of genetic 94 

diversity on short-term plastic responses to environmental change, without the potentially 95 

overwhelming effects of strong differences in inbreeding depression.  96 

The purpose of this study was to test whether naturally inbred populations show 97 

reduced fitness and altered physiological responses in a common garden environment 98 

relative to outbred populations. The common garden environment was situated outside the 99 

native range of A. l. lyrata and therefore provided growing conditions that differed from 100 

those naturally experienced. Specifically, we asked: 1) Is inbreeding associated with 101 

reduced fitness compared to outcrossing populations when individuals are transplanted to 102 

the common garden environment? 2) Is fitness-related trait variation better explained by 103 
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population latitude and/or population phylogeographic history than by history of 104 

inbreeding? 3) Is there a change in the metabolome over time when plants are transplanted 105 

to a naturally variable environment compared to those kept constant environmental 106 

conditions? 4) Does inbreeding alter the direction or magnitude of physiological plasticity 107 

over time or across environments?  108 

 109 

MATERIALS AND METHODS 110 

Seed sampling and plant origins 111 

We sampled seeds from eight outcrossing and five inbreeding populations (Fig 1; 112 

Table S1; supplementary methods), classified based on a combination of previously 113 

estimated outcrossing rates (tm) using progeny arrays based on microsatellite markers 114 

(inbreeding  tm <0.5), and proportion of self-compatible individuals (reflecting the potential 115 

for inbreeding; inbreeding > 0.5) taken from [23], as well as observed heterozygosity (Ho; 116 

reflecting actual history of inbreeding; inbreeding Ho <0.03) estimated using Restriction 117 

Associated DNA sequencing (Table S2; [26]). One population TSSA showed intermediate 118 

outcrossing rates, but similar heterozygosity to outcrossing populations, hence was 119 

categorised as outcrossing. 120 

Previous STRUCTURE analysis of multi-locus microsatellite data for an extensive 121 

sampling across the Great Lakes region classified populations (that we label with –I or –O 122 

to indicate inbreeding and outcrossing) into five genetic groups [23], which were largely 123 

consistent with geographic distribution (Fig. 1a): A) IND-O, SAK-O, SBD-O; B) TC-I, 124 

TSS-O, TSSA-O, MAN-O; C) RON-I, PTP-I, PCR-O, PIN-O; D) LPT-I; and E) KTT-I.  125 

Most populations occurred on sand dunes along lakefronts, except for TC-I (growing on 126 

limestone on cliff edges), TSSA-O (limestone alvar site close to sand dunes), and KTT-I 127 

(the only population not on a lakefront, found in an isolated oak woodland sandflat). 128 

 129 

Measuring growth, survival and reproduction in the common garden 130 
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To compare relative fitness of outbred and inbred A. l. lyrata, we established a common 131 

garden at the University of Glasgow Scottish Centre for Ecology and the Natural 132 

Environment (SCENE) on Loch Lomond (56.1289°N, 4.6129° W). The summer months in 133 

this part of Scotland tend to be relatively cool and wet, and winter months milder, than the 134 

corresponding times of the year around the North American Great lakes, so we expected 135 

this common garden to represent a novel environment for A. l. lyrata. Seeds were 136 

germinated from 20 maternal families per population and transplanted to the common 137 

garden in their 40-cell trays on 21st September 2012 (see supplementary methods). For the 138 

three largest populations (IND-O, PIN-O and RON-I) we used 40 families to obtain more 139 

precise estimates of fitness, and seeds from only 14 maternal plants were available for one 140 

inbred population (PTP-I). Four blocks were set up, with each block containing 80 141 

individuals (one individual from each of 5 families per population, or 10 for the three 142 

largest populations) systematically distributed across four 40-cell trays. The position of 143 

each population in a block was randomised across the four blocks (see Fig S1). To explore 144 

population divergence in seedling growth rates, circular rosette area before transplant (7 145 

weeks after germination) was estimated from two perpendicular measurements of rosette 146 

diameter. The proportion of plants with at least one open flower was then recorded once a 147 

week in the spring from 23rd April till 4th June 2013 (when all but two plants had 148 

flowered). The proportion of plants surviving overwinter was recorded in late spring over 149 

two years (28th May 2013 and 21st May 2014). 150 

 151 

Measuring metabolomic responses to growing environment, time and population 152 

inbreeding history 153 

To determine whether population inbreeding history affected short-term 154 

physiological responses under contrasting environmental conditions, we compared 155 

metabolomic profiles over time for three outcrossing (PCR-O, PIN-O, and TSS-O) and 156 

three inbreeding (LPT-I, RON-I, TC-I) populations when transplanted outdoors to the 157 
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common garden, or when kept under controlled growth chamber conditions (16h: 8h, 158 

20°C:16°C, light: dark cycle). The common garden experiment for metabolomics samples 159 

was established on 17th June 2013 and constituted one new experimental block 160 

independent of the larger common garden study. For each mating type, two geographically 161 

close populations (on the same lakefront) and one distant population were selected (see Fig 162 

1). The two “distant” populations” (TSS-O and TC-I) are proximally located to one 163 

another on the Bruce Peninsula. We grew seedlings from five maternal families per 164 

population under controlled growth cabinet conditions for six weeks. Then, in August 2013 165 

one seedling from each mother was either transplanted to 6cm deep trays containing F2+S 166 

compost under the same growth chamber conditions, or transplanted outdoors to the 167 

common garden environment.  168 

To examine changes in the metabolome over time, two similar-sized leaves were 169 

sampled from the rosette of each individual at three time points: 1) before transplanting 170 

(4th August 2013); 2) ~24h after transplantation to their respective environments to test for 171 

‘transplant shock’ effects (7th August 2013); and 3) 1 month after transplantation (5th 172 

September 2013), to give plants time to respond to the growing environments. We were 173 

unable to measure fresh leaf mass in the field, so instead compared similar-sized leaves, 174 

making the assumption that changes in leaf mass would not strongly alter the relative 175 

amounts of different metabolites (at least independent of broader responses to different 176 

growing environments). Leaf samples were immediately frozen in liquid nitrogen, 177 

transported on dry ice and stored until use at -70°C. Plants showing heavy damage by 178 

herbivores or heavy pathogen infections were excluded from the metabolomics analysis 179 

(see supplementary methods).   180 

 Seedlings from three maternal families per population were selected for metabolite 181 

screening, resulting in nine samples each from inbreeding and outcrossing populations per 182 

treatment per timepoint (108 samples in total). Samples were extracted in a chloroform: 183 

methanol: water (1:3:1 ratio) mix (see supplementary methods for details) and analysed 184 
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using LC-MS. Briefly, 10µL of each sample was introduced to a liquid chromatography 185 

system (UltiMate 3000 RSLC, Thermo, UK) and separated on a 4.6 mm x 150 mm ZIC-186 

pHILIC analytical column with a 2 mm x 20 mm guard column. The eluents were A: water 187 

with 20mM ammonium carbonate and B: acetonitrile. The gradient ran from 20% A, 80% 188 

B to 80% A, 20% B in 15min with a wash at 95% A for 3min followed by equilibration at 189 

20% A for 8min. Metabolites were detected using an Orbitrap Exactive (Thermofisher, 190 

UK) instrument in positive/negative switching mode at resolution 50,000 with a m/z scan 191 

range of 70-1400. In total, 108 samples, plus a sample of pooled individual extractions for 192 

quality control, were run in a randomised order interspersed with twelve blank extraction 193 

buffer samples. No extraction internal standards were used, because our analysis focused 194 

on relative quantitation among treatments rather than absolute quantitation. We follow 195 

additional published guidelines to avoid detector sensitivity differences and drift over time 196 

among sample batches [38]. Data were annotated using a bespoke bioinformatics pipeline 197 

(mzMatch, IDEOM and PiMP) developed at Glasgow Polyomics [39-41], which resulted 198 

in a final dataset of 936 metabolites, of which 106 metabolites were confidently identified 199 

through comparison to a panel of standards (supporting methods). Raw peak heights for 200 

each putative compound in each sample were corrected by subtracting the average of the 201 

twelve blank readings for that compound; these corrected peak heights were used for 202 

subsequent analyses. 203 

 204 

Statistical analyses 205 

For the four response variables (rosette area, proportion plants flowering and 206 

survivorship in each year) we used generalised linear mixed effects models (GLMMs) 207 

from the R package lme4 to test for the fixed effects of inbreeding history, genetic 208 

structure and population latitude, whilst controlling for the random effects of experimental 209 

block and population. Rosette area before transplant (in 2012) was used as a covariate in 210 

models for proportion flowering and survival in 2013. To explore whether adaptation to 211 
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broad environmental gradients varied with mating system, we also tested for an interaction 212 

between inbreeding history and latitude. History of inbreeding was modelled using either 213 

mating system class (“inbreeding” or “outcrossing”, a categorical predictor) or observed 214 

heterozygosity (Ho, a continuous predictor). Ho consistently separates mating system 215 

groups across study years, whereas estimates of outcrossing rates (tm) and the proportion of 216 

self-compatible plants can vary across years (Mable, unpublished data). As these predictors 217 

are correlated, we first fitted two full models using either mating system class or Ho: (i) 218 

response ~ mating system + genetic cluster + latitude + latitude:mating system + 219 

(1|population) + (1|block); (ii) response ~ Ho + genetic cluster + latitude + latitude:Ho + 220 

(1|population) + (1|block) 221 

We selected the model with the lowest AIC and then performed backwards model 222 

selection, removing non-significant factors and comparing nested models using likelihood 223 

ratio tests. We assumed a Gaussian error distribution for rosette area and binomial error for 224 

the three binary response variables of flowering status and survivorship (in 2013 and 225 

2014). Gaussian models were fitted using maximum likelihood, and we assessed Gaussian 226 

model fit by examining plots of residuals against fitted values and quantile-quantile plots.  227 

We also separately tested for a genetic cluster-by-inbreeding interaction for two 228 

well-sampled clusters containing both outcrossing and inbreeding populations: MAN-O, 229 

TSS-O, TSSA-O vs TC-I (cluster B), and PCR-O, PIN-O vs RON-I, PTP-I (cluster C). 230 

Model simplification proceeded as described above, although the starting model was 231 

different: response ~ inbreeding history + genetic cluster + genetic cluster:inbreeding 232 

history + (1|block) + (1|population) 233 

 For the metabolomics data, we first conducted Principal Components Analysis 234 

using the R function prcomp (with variables scaled to have unit variance) to visualise 235 

changes in the metabolome with respect to experimental growing condition, time point and 236 

population inbreeding history. As peak height data for some metabolites was non-normally 237 

distributed, we also compared our PCA results to those of an unconstrained, distance-based 238 
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Non-metric Dimensional Scaling (NMDS) approach implemented using the R package 239 

vegan. To assess physiological plasticity, we compared the magnitude and direction of 240 

metabolome shifts in response to the two different growing environments, and plotted the 241 

difference in values of the first five principal components (PCs) for related individuals 242 

(same maternal family) growing in the different environments at time point 3. We 243 

predicted that individuals from genetically-depauperate inbreeding populations would 244 

show a reduced magnitude of change in each PC relative to those from outcrossing 245 

populations. We tested the fixed effect of inbreeding history on the magnitude of change 246 

for each of the first five PCs.  247 

 Metabolite diversity was estimated with a set of diversity measures that have been 248 

developed to estimate the relative importance of differences in the abundance of species in 249 

a community [42]. We estimated both ‘metabolite richness’ (the number of metabolites) 250 

and ‘abundance-corrected diversity’ (reduced emphasis on low abundance metabolites; 251 

details in supplementary methods). We used LMMs with Gaussian error family to fit the 252 

following model: diversity ~ time*environment*mating system class + (1|population). 253 

Model fit and simplification was examined as described above for fitness-related data.  254 

 To explore whether inbreeding history explained variation in individual 255 

metabolites, we used LMMs (with Gaussian error) to model variation in corrected peak 256 

heights for each of the 936 metabolites separately. For each growing environment 257 

separately, we tested the significance of the effects of time, inbreeding history and their 258 

interaction, whilst accounting for the random effect of population. Given that time points 1 259 

and 2 showed similar multivariate metabolomic patterns, we focused on data from time 260 

points 1 and 3. Due to the large number of metabolites involved, we did not assess model 261 

fit, but corrected for multiple testing using the Benjamini-Hochberg procedure for 262 

restricting the false discovery rate to 5%. We also estimated log2-fold change in 263 

confidently identified metabolites among treatments, identifying those that were on 264 

average >1-fold higher or lower in the common garden samples relative to the growth 265 



 12 

chamber samples at time point 3, but which showed no difference (<1-fold changes) at 266 

time point 1 (when all plants were in the growth chamber).  267 

 268 

RESULTS 269 

Natural population inbreeding does not reduce survival or alter phenology in a novel 270 

common garden environment 271 

 Rosette size before transplant, as a proxy for relative growth rate, did not 272 

significantly vary with population inbreeding history (Table 1). However, divergence in 273 

rosette size between inbreeding populations (see Fig S2) resulted in a significant 274 

interaction between population latitude and inbreeding history, and a significant effect of 275 

genetic structure (Table 1). Specifically, rosette size tended to increase with latitude for 276 

inbreeding, but not outcrossing populations (Fig 2a). Analysis of data from two well-277 

sampled genetic clusters (TSSA-O, MAN-O, TSS-O, TC-I vs PCR-O, PIN-O, RON-I, 278 

PTP-I) also revealed a significant interaction between genetic structure and inbreeding 279 

history (Table S4a), driven by the large rosette size of the inbreeding TC in genetic cluster 280 

B (Table S4b).  281 

 Of the 310 transplanted individuals, 251 (79.0%) survived the first winter, with no 282 

significant effect of either inbreeding history, latitude or rosette size at the time of 283 

transplant on survival (Fig 2b; Table 1). Genetic structure significantly affected first year 284 

survival, with individuals from genetic cluster C (PCR, PIN, RON and PTP) and E (KTT) 285 

showing higher rates of survival than other clusters (Table 1; Table S3). Only 34 286 

individuals (11.0%) survived to spring 2014, and again no effect of inbreeding history was 287 

observed (Table 1). Over the second winter inbreeding populations showed both the 288 

highest (PTP-I) and lowest (LPT-I, TC-I, KTT-I) rates of survival, driving a significant 289 

interaction of latitude with inbreeding history (Fig 2c) and a significant effect of genetic 290 

cluster (Table 1; Table S3). However, this effect of genetic cluster disappeared when only 291 

the two well-sampled genetic clusters were analysed (Table S4a). 292 
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Within a 20-day time period in May 2013, 88% of plants flowered, with no 293 

phenological differences between inbreeding and outcrossing populations. However, there 294 

were clear population effects, with individuals from SBD-O flowering earliest and those 295 

from KTT-I flowering latest (Fig 1). On 10th May 2013, when just over 50% of plants were 296 

flowering, there was no effect of inbreeding history or rosette size on the likelihood of 297 

flowering (Table 1), but we observed a significant interaction between inbreeding history 298 

and latitude, as well as an effect of genetic structure; specifically, the proportion of plants 299 

flowering increased with latitude for outcrossing populations, but not inbreeding 300 

populations (Fig 2d). For the two well-sampled genetic clusters, a genetic cluster-by-301 

inbreeding history interaction was observed (Table S4a), with inbreeding TC-I flowering 302 

later than outcrossing populations in cluster B, but inbreeding PTP-I and RON-I flowering 303 

faster than outcrossing populations in cluster C (Table S4b). 304 

 305 

Physiological responses to novel environments are driven by time and experimental 306 

treatments, with limited effects of inbreeding. 307 

The first five principal components (PCs) extracted from all compounds explained 308 

50.1% variation in the metabolome. Variation in these five PCs (and the two NMDS axes) 309 

were mostly explained by the interacting effects of growing environment and time, rather 310 

than inbreeding history (Table S5A, B). Plotting PC1 (19.9% variance) against PC2 311 

(13.1%) showed clear evidence for divergence in metabolite profiles at time point 3 312 

compared to the earlier time points (Fig 3a), particularly in the outdoor common garden, a 313 

pattern that was also supported by the NMDS analysis (Figure S4a). In both the PCA and 314 

NMDS analysis we observed no separation of samples from inbreeding and outcrossing 315 

populations. 316 

 The absence of marked divergence between time points 1 and 2 suggests minimal 317 

transplant shock, and that sampling leaves three days earlier did not significantly alter the 318 

metabolome. There was some evidence for population divergence in metabolomic profiles 319 
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at time point 1, with LPT-I differing from other populations (Fig S3a). However, 320 

genetically and geographically distinct TC-I and TSS-O showed similar metabolic profiles 321 

to other populations at both time points (Fig S3a,b).  322 

Despite a strong metabolomic shift over time in the experiment, there was no 323 

evidence for altered physiological plasticity at time point 3 in inbreeding compared to 324 

outcrossing populations. The direction and magnitude of change in PC1 was mostly 325 

consistent across families and independent of population inbreeding history (Fig 3b-c). 326 

Supporting this, PC2 to PC5, and the two NMDS axes, also showed no significant effect of 327 

inbreeding history on metabolomic plasticity (Fig S5a-h; Fig S4b-e).  328 

The diversity of metabolites changed significantly over time in the outdoor 329 

common garden environment, but mostly independent of population inbreeding history. 330 

Specifically, metabolite richness showed a significant time*treatment interaction (P 331 

<0.0001; Fig S6a), with fewer metabolites detected at time point 3 in the outdoor common 332 

garden than the growth chamber. By contrast, abundance-corrected diversity showed a 333 

significant time*treatment and mating system*treatment interaction (combined model 334 

significance: P < 0.0001). This was driven by a greater number of abundant compounds at 335 

time point 3 in the outdoor common garden, and a tendency for inbred individuals to show 336 

an elevated number of abundant compounds relative to outcrossed populations at all time 337 

points in the growth chamber, but not in the common garden (Fig S6b). 338 

In both growing environments, time-by-inbreeding history interactions, or effects 339 

of inbreeding history alone, were not significant for any metabolites following multiple 340 

testing correction (Table 2). By contrast, time since transplant had significant effects on 341 

36.0% of metabolites in the growth chamber and notably 1.6x more (59.2%) metabolites 342 

changed over time in the outdoor common garden.  343 

Of 106 confidently identified compounds, 28 were >1-fold higher and 18 were >1-344 

fold lower in the outdoor common garden samples relative to the growth chamber samples 345 

at time point 3 (Table S6). Compounds that showed the strongest fold-changes included 346 
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the vitamin ascorbate (also annotated as D-Glucuronolactone), several members of the 347 

TCA cycle (S-malate and citrate) and several phosphorylated compounds associated with 348 

glycolysis and the pentose phosphate pathway (phosphoenolpyruvate, D-glucose/D-349 

Fructose 6-phosphate and D-ribose 5-phosphate). By contrast, 12 of 18 compounds that 350 

showed the greatest decrease in the common garden samples were amino acids or amino 351 

acid derivatives.  352 

 353 

DISCUSSION  354 

In this study, we found that inbreeding and outcrossing populations of A. l. lyrata 355 

sampled from multiple genetic lineages show similar fitness and short-term physiological 356 

responses when exposed to a new environment. Specifically, individuals from inbreeding 357 

(genetically depauperate) populations showed similar growth rates, survival rates and 358 

flowering phenology to individuals from outbreeding (genetically diverse) populations in a 359 

common garden environment outside their native range. Instead, population genetic 360 

structure and environmental gradients associated with population latitude, consistently 361 

explained more variation in fitness-related traits. Furthermore, by assessing variation in 362 

metabolome profiles over time, we found that population inbreeding history had little 363 

impact on physiological responses to the novel environment.  364 

Rates of survival in the common garden were not significantly explained by 365 

population inbreeding history in either study year, even when survival was much lower 366 

over the second winter compared to the first. Such low survival may reflect root 367 

degradation under the relatively mild winter conditions observed in 2013 (Fig S7); 368 

conditions that are rarely encountered in the native range of A. l. lyrata around the North 369 

American Great Lakes. We found only a weak effect of genetic structure on first year 370 

survival, but second year survival was explained by genetic structure and an interaction 371 

between inbreeding history and latitude (a proxy for climatic conditions). Specifically, 372 

survival rates declined with increasing latitude for inbreeding populations but not 373 
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outcrossing populations, though this significant interaction likely resulted from one 374 

inbreeding population (PTP-I) showing much higher rates of survival in 2014 than other 375 

inbreeding populations. Interestingly, geographically proximate populations in the same 376 

genetic cluster around Lake Erie also varied in rates of survival, suggesting that 377 

phylogeographic history explains some, but not all of the population variation in 378 

overwinter survival. Instead, other population-level factors such as maternal effects (we 379 

used field-collected seeds) or random genetic drift have likely contributed to the observed 380 

variation in survival. 381 

A shift to selfing (and associated inbreeding) might also be associated with altered 382 

selection on flowering traits [43], which could impact responses to new environmental 383 

conditions. On the other hand, population-level, but not inbreeding effects, have been 384 

observed for several flowering traits (flower size and corolla length) in A. l. lyrata sampled 385 

from the same geographic region [27]. Based on flowering time data from one season, we 386 

observed no overall effect of inbreeding history on time to first flowering, but again found 387 

effects of genetic structure and population latitude in interaction with inbreeding history. 388 

For outcrossing populations, the proportion of plants flowering at a single time point was 389 

higher for populations from higher latitudes, consistent with a faster transition to flowering 390 

with a more contracted growing season. Supporting this, field observations suggest 391 

flowering is delayed by approximately one month for plants at the highest latitudes on 392 

Georgian Bay relative to those growing on the shores of Lake Erie (BM, personal 393 

observation). Of the inbreeding populations, three from separate genetic clusters (TC-I, 394 

LPT-I and KTT-I) flowered more slowly in the common garden than the genetically 395 

clustered populations RON-I and PTP-I. Such a pattern might partly reflect local 396 

phenological adaptation (for example KTT-I occupies a distinct oak woodland sand flat 397 

habitat away from a lakefront), but could also result from stochastic fixing of phenotypic 398 

variation during the postglacial colonisation of the Great Lakes by different genetic 399 

lineages [23]. Interestingly, the probability of specific alleles fixing during colonisation is 400 
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predicted to be higher for inbreeding than outcrossing populations, which might also 401 

explain the high levels of variation in flowering phenology and rosette size observed 402 

among inbreeding populations. Nevertheless, a greater sampling of both inbreeding and 403 

outcrossing populations would be necessary to thoroughly test this prediction.  404 

Interestingly, other common garden experiments using A. l. lyrata, have found 405 

mating system effects on survival and reproductive traits in individual study years, but no 406 

cumulative effect over multiple years in common gardens within [31] or outside the native 407 

range [32]. It is possible that growing plants in a novel environment to which all 408 

populations are maladapted could hide the effects of inbreeding depression (as predicted 409 

by a theoretical study: [44]); alternatively, enhanced levels of phenotypic variation in a 410 

novel environment leads to increased inbreeding depression [18]. Nevertheless, our data on 411 

flowering phenology, and survival suggest that reduced genetic variation due to inbreeding 412 

is not a consistent driver of variation in relative fitness in this species.  413 

Using untargeted metabolomics, we found little evidence that inbreeding alters 414 

physiological responses to a novel common garden environment. Effects of inbreeding 415 

were absent for the first two principal components, which explained 32.9% of variation in 416 

the metabolome and were instead strongly influenced by interactions between growing 417 

environment and time since transplantation. There was some metabolomic clustering by 418 

population at timepoint 1 (in the growth chamber), but the clusters were less distinct by 419 

timepoint 3 in the outdoor environment, suggesting that similarly strong plastic 420 

physiological responses in outcrossing and inbreeding populations overwhelmed minor 421 

effects of physiological divergence with respect to source habitats. The weak effects of 422 

population and genetic background on metabolomic fingerprints observed in our study are 423 

similar to patterns seen for genetically distinct European populations [36]. 424 

We also found no significant effects of mating system, but strong effects of time 425 

since transplantation, on variation in amounts of individual metabolites in both growing 426 

environments. Such a result contrasts with previously described effects of experimental 427 
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inbreeding on important biosynthetic pathways related to specific stressors, such as anti-428 

herbivore defence induction [14, 15]. One explanation for the absence of mating system 429 

effects in our study is that the common garden environment was not stressful enough to 430 

detect inbreeding effects on stress-related metabolic processes [45]. However, 431 

experimental evidence using A. l. lyrata from these same populations also suggested no 432 

consistent negative effect of inbreeding on resistance to the pathogen Albugo candida [46], 433 

or defence induction by herbivores [33]. The similarity of responses of individuals from 434 

inbreeding and outcrossing populations in our study suggests that the reduced 435 

heterozygosity resulting from multiple generations of selfing may not have compromised 436 

physiological plasticity. Alternatively, given that the inbreeding populations have persisted 437 

following postglacial expansion into the Great Lakes region [23], selection could have 438 

already removed those individuals with the greatest inbreeding load.  439 

When metabolite diversity was estimated with reduced emphasis on low abundance 440 

metabolites, inbred populations showed elevated metabolic diversity in the benign growth 441 

chamber environment, but not the common garden. Interestingly, experimentally inbred 442 

progeny from two self-incompatible A. l. petraea populations grown in a controlled 443 

environment also showed elevated expression of stress and photosynthesis related genes 444 

relative to outbred progeny [28]. Although we do not have evidence that elevated 445 

metabolite diversity negatively affects plant fitness, these results could emphasise the 446 

importance of the environmental context when considering inbreeding depression [11, 12].   447 

Plants grown in our outdoor common garden were exposed to potential abiotic 448 

stressors, which are known to significantly alter the leaf metabolome [47, 48]. The 449 

observed changes in confidently-identified metabolites in our experiment are consistent 450 

with plants in the common garden responding to increased light intensity and levels of 451 

radiation; the common garden samples showed elevated levels of the vitamin ascorbate, a 452 

compound associated with UV-B tolerance [49], as well as elevated levels of compounds 453 

linked to glycolysis and the TCA cycle, suggesting elevated rates of photosynthesis [49]. 454 
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By contrast, the reduced levels of these metabolites and elevated levels of amino acids in 455 

growth chamber samples could reflect the higher growth rates of plants under controlled 456 

growth chamber conditions [e.g. 50](see photos in Fig S8). Additional controlled 457 

experiments would therefore be necessary to understand the adaptive nature of these 458 

divergent metabolomic responses to different growing environments. Given the observed 459 

leaf reddening in the common garden (Fig S8) that suggests abiotic stress, future assays 460 

should target metabolites, such as anthocyanins, known to play a role in stress adaptation 461 

and defence. Nevertheless, the use of untargeted metabolomics clearly offers promise for 462 

better understanding the different molecular pathways activated under novel environments 463 

or by particular stressors, as well as the impacts of genome-wide diversity on metabolite 464 

diversity and plasticity. Together, these results offer new insights into the importance of 465 

intraspecific patterns of genetic variation for tolerating changing environmental conditions. 466 
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TABLES 

Table 1: Statistics detailing the evidence for effects of population latitude, neutral genetic structure, inbreeding history and the interaction between 

latitude and inbreeding history on growth rates, survival (in 2013 and 2014) and flowering phenology.  

 

 

 

 

 

 

 

 

 
a Explanatory factors included in the full model: Genetic structure + Latitude + Inbreeding + Inbreeding:Latitude +  Rosette area 
b Inbreeding history represents either mating system class (outcrossing vs inbreeding; used for flowering in 2013 and survival in 2014) or observed 

heterozygosity (Ho; used for rosette area and survival in 2013), depending on which produced the full model with the lowest AIC. 
c Likelihood ratio statistics (LR) and p-values for the removal of this explanatory factor from the model. Degrees of freedom for the model comparison 

test are as follows: Genetic structure df = 4; all other factors df = 1. Bold text indicates those factors included in the minimal adequate (best-fitting) 

model. 

Explanatory factors a Rosette area c Survival (2013) c Proportion plants flowering c Survival (2014) c 

Inbreeding*Latitude b LR= 12.5, P= 0.0004 LR= 0.474, P= 0.491 LR= 17.9, P<0.0001 LR= 14.9, P= 0.0001 

Genetic structure         LR = 20.0, P= 0.0005 LR= 10.0, P= 0.040 LR= 27.7, P<0.0001 LR= 18.9, P= 0.0008  

Inbreeding b  LR= 2.68, P= 0.101 LR= 0.019, P= 0.891 LR= 1.87, P= 0.171 LR= 1.76, P= 0.185 

Latitude                       LR= 2.34, P= 0.126 LR= 0.014, P= 0.906 LR= 0.269, P= 0.604 LR= 0.197, P= 0.657 

Rosette area                    Not included LR= 0.033, P= 0.857 LR= 3.16, P= 0.075 Not included 
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Table 2: The number of metabolites showing significant interactions between time (points 

1 vs 3) and inbreeding history in each growing environment. 

 Growth chamber Common garden 

Factors tested N P < 0.05 a N (FDR 5%) a N P < 0.05 a N (FDR 5%) a 

inbreeding*time 85 0 42 0 

inbreeding 77 0 63 0 

time 405 337 586 554 
a number of 936 metabolites significant at P < 0.05, or with a false-discovery rate of 5% 
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FIGURE LEGENDS 

Figure 1: Proportion of plants flowering per inbreeding and outcrossing population over 

an 8-week period. Colours represent the five genetic structure groups identified by [23], 

with several interesting populations labelled. The arrow on the x-axis indicates the 

timepoint at which the proportion plants flowering was statistically compared (Fig 2d). 

Inset map: the eight outcrossing and five inbreeding populations of Arabidopsis l. lyrata 

sampled for this study. The six populations used for metabolomics analysis are indicated 

by *. Photo credit: Peter Hoebe. 
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Figure 2: Regression plots illustrating the interaction between four fitness-related traits 

and latitude for individuals from outcrossing (dark grey) and inbreeding (light grey) 

populations: (a) mean rosette area per population just before transplant; (b) proportion of 

plants alive per population in spring 2013; (c) proportion of plants alive per population in 

spring 2014; (d) proportion of plants flowering per population at an early season timepoint 

(10th May 2013). Lines indicate predictions of linear models to help visualise trends. 

Where relevant, the significance of the interaction between inbreeding history and latitude 

is given.  
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Figure 3: Metabolome variation and plasticity in Arabidopsis l. lyrata with respect to 

inbreeding history, time and growing environment. (a) plot of principal components 1 and 

2 with respect to population inbreeding history (open symbols= inbreeding; filled = 

outcrossing), time and growing environment. Each level of the growing 

environment*inbreeding history*timepoint interaction is represented by nine individuals 

(108 in total). (b) changes in values of PC1 for each individual at time point 3 for the two 

environments, with lines joining related individuals from the same family. (c) boxplot 

representing the change in PC1 (magnitude of plasticity) between growing environments at 

time point 3 for individuals grouped by population inbreeding status. FigS5a-h gives 

similar plots for PC2-5. 

 
 

 

 


