10 research outputs found
Plant diversity greatly enhances weed suppression in intensively managed grasslands
Weed suppression was investigated in a field experiment across 31 international sites. The study included 15 plant communities at each site, based on two grasses and two legumes, each sown in monoculture and 11 four-species mixtures varying in the relative proportions of the four species. At each site, one grass and one legume species was selected as fast establishing and the other two species were selected for persistence. Average weed biomass in mixtures over the whole experiment was 52% less (95% confidence interval, 30 to 75%) than in the most suppressive monoculture (transgressive suppression). Transgressive suppression of weed biomass persisted over each year for each mixture. Weed biomass was consistently low and relatively similar across all mixtures and years. Average sown species biomass was greater in all mixtures than in any monoculture. The suppressive effect of sown forage species on weeds in mixtures was achieved without any herbicide use. At each site, weed biomass for almost every mixture was lower than the average across the four monocultures. The average proportion of weed biomass in mixtures was less than in the most suppressive monoculture in two thirds of sites. Mixtures outyielded monocultures, and mixture yield comprised far lower weed biomass
Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites
v2007o
Identifying the drivers of changes in the relative abundances of species in agroecosystems
Increasing species diversity often promotes ecosystem functions in grasslands, but sward diversity may be reduced over time through competitive interactions among species. We investigated the development of species’ relative abundances in intensively managed agricultural grassland mixtures over three years to identify the drivers of diversity change. A continental-scale field experiment was conducted at 31 sites using 11 different four-species mixtures each sown at two seed abundances. The four species consisted of two grasses and two legumes, of which one was fast establishing and the other temporally persistent. We modelled the dynamics of the four-species mixtures over the three-year period. The relative abundances shifted substantially over time; in particular, the relative abundance of legumes declined over time but stayed above 15% in year three at many sites. We found that species’ dynamics were primarily driven by differences in the relative growth rates of competing species and secondarily by density dependence and climate. Alongside this, positive diversity effects in yield were found in all years at many sites
Contrasting survival and physiological responses of sub‑Arctic plant types to extreme winter warming and nitrogen
Abstract
Main conclusion: Evergreen plants are more vulnerable than grasses and birch to snow and temperature variability in the sub-Arctic.
Most Arctic climate impact studies focus on single factors, such as summer warming, while ecosystems are exposed to changes in all seasons. Through a combination of field and laboratory manipulations, we compared physiological and growth responses of dominant sub-Arctic plant types to midwinter warming events (6 °C for 7 days) in combination with freezing, simulated snow thaw and nitrogen additions. We aimed to identify if different plant types showed consistent physiological, cellular, growth and mortality responses to these abiotic stressors. Evergreen dwarf shrubs and tree seedlings showed higher mortality (40–100%) following extreme winter warming events than Betula pubescens tree seedlings and grasses (0–27%). All species had growth reductions following exposure to − 20 °C, but not all species suffered from − 10 °C irrespective of other treatments. Winter warming followed by − 20 °C resulted in the greatest mortality and was strongest among evergreen plants. Snow removal reduced the biomass for most species and this was exacerbated by subsequent freezing. Nitrogen increased the growth of B. pubescens and grasses, but not the evergreens, and interaction effects with the warming, freezing and snow treatments were minor and few. Physiological activity during the winter warming and freezing treatments was inconsistent with growth and mortality rates across the plants types. However, changes in the membrane fatty acids were associated with reduced mortality of grasses. Sub-Arctic plant communities may become dominated by grasses and deciduous plants if winter snowpack diminishes and plants are exposed to greater temperature variability in the near future
Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites
1 Ecological and agronomic research suggests that increased crop diversity in species-poor intensive systems may improve their provision of ecosystem services. Such general predictions can have critical importance for worldwide food production and agricultural practice but are largely untested at higher levels of diversity. 2 We propose new methodology for the design and analysis of experiments to quantify diversity-function relationships. Our methodology can quantify the relative strength of inter-specific interactions that contribute to a functional response, and can disentangle the separate contributions of species richness and relative abundance. 3 Applying our methodology to data from a common experiment at 28 European sites, we show that the above-ground biomass of four-species mixtures (two legumes and two grasses) in intensive grassland systems was consistently greater than that expected from monoculture performance, even at high productivity levels. The magnitude of this effect generally resulted in transgressive overyielding. 4 A combined analysis of first-year results across sites showed that the additional performance of mixtures was driven by the number and strength of pairwise inter-specific interactions and the evenness of the community. In general, all pairwise interactions contributed equally to the additional performance of mixtures; the grass-grass and legume-legume interactions were as strong as those between grasses and legumes. 5 The combined analysis across geographical and temporal scales in our study provides a generality of interpretation of our results that would not have been possible from individual site analyses or experimentation at a single site. 6 Our four-species agricultural grassland communities have proved a simple yet relevant model system for experimentation and development of methodology in diversity-function research. Our study establishes that principles derived from biodiversity research in extensive, semi-natural grassland systems are applicable in intensively managed grasslands with agricultural plant species
Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites
Ecological and agronomic research suggests that increased crop diversity in species-poor intensive systems may improve their provision of ecosystem services. Such general predictions can have critical importance for worldwide food production and agricultural practice but are largely untested at higher levels of diversity.
2We propose new methodology for the design and analysis of experiments to quantify diversity-function relationships. Our methodology can quantify the relative strength of inter-specific interactions that contribute to a functional response, and can disentangle the separate contributions of species richness and relative abundance.
3Applying our methodology to data from a common experiment at 28 European sites, we show that the above-ground biomass of four-species mixtures (two legumes and two grasses) in intensive grassland systems was consistently greater than that expected from monoculture performance, even at high productivity levels. The magnitude of this effect generally resulted in transgressive overyielding.
4A combined analysis of first-year results across sites showed that the additional performance of mixtures was driven by the number and strength of pairwise inter-specific interactions and the evenness of the community. In general, all pairwise interactions contributed equally to the additional performance of mixtures; the grass-grass and legume-legume interactions were as strong as those between grasses and legumes.
5The combined analysis across geographical and temporal scales in our study provides a generality of interpretation of our results that would not have been possible from individual site analyses or experimentation at a single site.
6Our four-species agricultural grassland communities have proved a simple yet relevant model system for experimentation and development of methodology in diversity-function research. Our study establishes that principles derived from biodiversity research in extensive, semi-natural grassland systems are applicable in intensively managed grasslands with agricultural plant species
Weed suppression greatly increased by plant diversity in intensively managed grasslands: A continental-scale experiment
1. Grassland diversity can support sustainable intensification of grassland production through increased yields, reduced inputs and limited weed invasion. We report the effects of diversity on weed suppression from 3 years of a 31-site continental-scale field experiment. 2. At each site, 15 grassland communities comprising four monocultures and 11 fourspecies mixtures based on a wide range of species' proportions were sown at two densities and managed by cutting. Forage species were selected according to two crossed functional traits, 'method of nitrogen acquisition' and 'pattern of temporal development'. 3. Across sites, years and sown densities, annual weed biomass in mixtures and monocultures was 0.5 and 2.0 t DM ha−1 (7% and 33% of total biomass respectively). Over 95% of mixtures had weed biomass lower than the average of monocultures, and in twothirds of cases, lower than in the most suppressive monoculture (transgressive suppression). Suppression was significantly transgressive for 58% of site-years. Transgressive suppression by mixtures was maintained across years, independent of site productivity. 4. Based on models, average weed biomass in mixture over the whole experiment was 52% less (95% confidence interval: 30%-75%) than in the most suppressive monoculture. Transgressive suppression of weed biomass was significant at each year across all mixtures and for each mixture. 5. Weed biomass was consistently low across all mixtures and years and was in some cases significantly but not largely different from that in the equiproportional mixture. The average variability (standard deviation) of annual weed biomass within a site was much lower for mixtures (0.42) than for monocultures (1.77). 6. Synthesis and applications. Weed invasion can be diminished through a combination of forage species selected for complementarity and persistence traits in systems designed to reduce reliance on fertiliser nitrogen. In this study, effects of diversity on weed suppression were consistently strong across mixtures varying widely in species' proportions and over time. The level of weed biomass did not vary greatly across mixtures varying widely in proportions of sown species. These diversity benefits in intensively managed grasslands are relevant for the sustainable intensification of agriculture and, importantly, are achievable through practical farm-scale actions. Dades primàries associades a l'article http://hdl.handle.net/10459.1/6055