14 research outputs found

    Arctic sea ice melt leads to atmospheric new particle formation

    Get PDF
    Atmospheric new particle formation (NPF) and growth significantly influences climate by supplying new seeds for cloud condensation and brightness. Currently, there is a lack of understanding of whether and how marine biota emissions affect aerosol-cloud-climate interactions in the Arctic. Here, the aerosol population was categorised via cluster analysis of aerosol size distributions taken at Mt Zeppelin (Svalbard) during a 11 year record. The daily temporal occurrence of NPF events likely caused by nucleation in the polar marine boundary layer was quantified annually as 18%, with a peak of 51% during summer months. Air mass trajectory analysis and atmospheric nitrogen and sulphur tracers link these frequent nucleation events to biogenic precursors released by open water and melting sea ice regions. The occurrence of such events across a full decade was anti-correlated with sea ice extent. New particles originating from open water and open pack ice increased the cloud condensation nuclei concentration background by at least ca. 20%, supporting a marine biosphere-climate link through sea ice melt and low altitude clouds that may have contributed to accelerate Arctic warming. Our results prompt a better representation of biogenic aerosol sources in Arctic climate models

    Carotenoid to chlorophyll energy transfer in light harvesting complex II from Arabidopsis thaliana probed by femtosecond fluorescence upconversion

    No full text
    rimers of light harvesting complex II from Arabidopsis thaliana were studied by femtosecond fluorescence upconversion. The average lifetime of the carotenoid S2 state was not, vert, similar57 fs for wild type trimers and not, vert, similar70 fs for trimers from a mutant plant with a distinctly different carotenoid composition. We estimate that not, vert, similar56% of the energy transferred from carotenoids to chlorophylls proceeds via the carotenoid S2 state in the wild type and not, vert, similar46% in the mutant. By comparison with the fluorescence excitation spectra, we find that not, vert, similar20% of the energy transferred in both samples proceeds through the carotenoid S1 state

    The minor Antenna Proteins CP24 and CP26 affect the interactions between Photosystem II subunits and the electron transport rate within grana membranes.

    No full text
    We investigated the function of chlorophyll a/b binding antenna proteins Chlorophyll Protein 26 (CP26) and CP24 in light harvesting and regulation of photosynthesis by isolating Arabidopsis thaliana knockout lines that completely lacked one or both of these proteins. All three mutant lines had a decreased efficiency of energy transfer from trimeric light-harvesting complex II (LHCII) to the reaction center of photosystem II (PSII) due to the physical disconnection of LHCII from PSII and formation of PSII reaction center depleted domains in grana partitions. Photosynthesis was affected in plants lacking CP24 but not in plants lacking CP26: the former mutant had decreased electron transport rates, a lower DeltapH gradient across the grana membranes, reduced capacity for nonphotochemical quenching, and limited growth. Furthermore, the PSII particles of these plants were organized in unusual two-dimensional arrays in the grana membranes. Surprisingly, overall electron transport, nonphotochemical quenching, and growth of the double mutant were restored to wild type. Fluorescence induction kinetics and electron transport measurements at selected steps of the photosynthetic chain suggested that limitation in electron transport was due to restricted electron transport between Q(A) and Q(B), which retards plastoquinone diffusion. We conclude that CP24 absence alters PSII organization and consequently limits plastoquinone diffusion

    The Background Noise Environment During the 2013 Target and REverberation eXperiment

    No full text

    Ice nucleating particles in the Antarctic region

    No full text
    Ice nucleating particles (INPs) are rare but important atmospheric particles as they induce the formation of primary ice in mixed phase clouds and also in some cirrus clouds. A plethora of substances which can be found in atmospheric particles can induce ice nucleation. The most important ice active particle types in the atmosphere are assumed to be mineral dust and biological particles, which can originate from a large number of sources. It is hence not surprising that INP concentrations vary over several orders of magnitude at any ice nucleation temperature, with concentrations being typically larger in continental than in marine environments. Although research concerning INP and their global occurrence has seen a steep rise in the past years, global INP concentrations are still not well known, and not all important INP sources are clear, neither are there good parameterizations for describing INP concentrations in models. To increase the knowledge of typical global INP concentrations and to draw conclusions about INP sources, we examined INP concentrations in the Antarctic region, namely at the German research Station Neumayer III, located at shelf ice in close proximity (only some 10 km) to the ice edge, at the Belgian research Station Princess Elisabeth, located roughly 200 km inland and at an altitude of 1390 m, and during a campaign including ship- and land-based data at the Antarctic peninsula. We used our well-established methods of filter collection and off-line analysis with cold-stages to derive INP concentrations in these locations. For Neumayer, two years of data are available. INP concentrations there were generally lower than values derived, e.g., for northern mid latitudes, and they were similar to values published for the Southern Ocean in literature. No pronounced annual cycle was observed. Around and on the Antarctic peninsula, INP concentrations were roughly similar to those observed at Neumayer. However, the Princess Elisabeth station, for which only data obtained during two austral summers are available, showed the lowest values detected in this study. Our results suggest that sources of INP in the Antarctic region are rare, and particularly so on Antarctica itself
    corecore