34 research outputs found

    A genome-wide association study of men with symptoms of testicular dysgenesis syndrome and its network biology interpretation

    Get PDF
    Background Testicular dysgenesis syndrome (TDS) is a common disease that links testicular germ cell cancer, cryptorchidism and some cases of hypospadias and male infertility with impaired development of the testis. The incidence of these disorders has increased over the last few decades, and testicular cancer now affects 1% of the Danish and Norwegian male population. Methods To identify genetic variants that span the four TDS phenotypes, the authors performed a genome-wide association study (GWAS) using Affymetrix Human SNP Array 6.0 to screen 488 patients with symptoms of TDS and 439 selected controls with excellent reproductive health. Furthermore, they developed a novel integrative method that combines GWAS data with other TDS-relevant data types and identified additional TDS markers. The most significant findings were replicated in an independent cohort of 671 Nordic men. Results Markers located in the region of TGFBR3 and BMP7 showed association with all TDS phenotypes in both the discovery and replication cohorts. An immunohistochemistry investigation confirmed the presence of transforming growth factor beta receptor type III (TGFBR3) in peritubular and Leydig cells, in both fetal and adult testis. Single-nucleotide polymorphisms in the KITLG gene showed significant associations, but only with testicular cancer. Conclusions The association of single-nucleotide polymorphisms in the TGFBR3 and BMP7 genes, which belong to the transforming growth factor b signalling pathway, suggests a role for this pathway in the pathogenesis of TDS. Integrating data from multiple layers can highlight findings in GWAS that are biologically relevant despite having border significance at currently accepted statistical levels

    Optimizing Staining Protocols for Laser Microdissection of Specific Cell Types from the Testis Including Carcinoma In Situ

    Get PDF
    Microarray and RT-PCR based methods are important tools for analysis of gene expression; however, in tissues containing many different cells types, such as the testis, characterization of gene expression in specific cell types can be severely hampered by noise from other cells. The laser microdissection technology allows for enrichment of specific cell types. However, when the cells are not morphologically distinguishable, it is necessary to use a specific staining method for the target cells. In this study we have tested different fixatives, storage conditions for frozen sections and staining protocols, and present two staining protocols for frozen sections, one for fast and specific staining of fetal germ cells, testicular carcinoma in situ cells, and other cells with embryonic stem cell-like properties that express the alkaline phosphatase, and one for specific staining of lipid droplet-containing cells, which is useful for isolation of the androgen-producing Leydig cells. Both protocols retain a morphology that is compatible with laser microdissection and yield RNA of a quality suitable for PCR and microarray analysis

    Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor

    Get PDF
    The international Testicular Cancer Consortium (TECAC) combined five published genome-wide association studies of testicular germ cell tumor (TGCT; 3,558 cases and 13,970 controls) to identify new susceptibility loci. We conducted a fixed-effects meta-analysis, including, to our knowledge, the first analysis of the X chromosome. Eight new loci mapping to 2q14.2, 3q26.2, 4q35.2, 7q36.3, 10q26.13, 15q21.3, 15q22.31, and Xq28 achieved genome-wide significance (P < 5 × 10−8). Most loci harbor biologically plausible candidate genes. We refined previously reported associations at 9p24.3 and 19p12 by identifying one and three additional independent SNPs, respectively. In aggregate, the 39 independent markers identified to date explain 37% of father-to-son familial risk, 8% of which can be attributed to the 12 new signals reported here. Our findings substantially increase the number of known TGCT susceptibility alleles, move the field closer to a comprehensive understanding of the underlying genetic architecture of TGCT, and provide further clues to the etiology of TGCT

    A low-gluten diet induces changes in the intestinal microbiome of healthy Danish adults

    Get PDF
    \ua9 2018, The Author(s). Adherence to a low-gluten diet has become increasingly common in parts of the general population. However, the effects of reducing gluten-rich food items including wheat, barley and rye cereals in healthy adults are unclear. Here, we undertook a randomised, controlled, cross-over trial involving 60 middle-aged Danish adults without known disorders with two 8-week interventions comparing a low-gluten diet (2 g gluten per day) and a high-gluten diet (18 g gluten per day), separated by a washout period of at least six weeks with habitual diet (12 g gluten per day). We find that, in comparison with a high-gluten diet, a low-gluten diet induces moderate changes in the intestinal microbiome, reduces fasting and postprandial hydrogen exhalation, and leads to improvements in self-reported bloating. These observations suggest that most of the effects of a low-gluten diet in non-coeliac adults may be driven by qualitative changes in dietary fibres

    Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers

    Get PDF
    Abstract: Genome-wide association studies (GWAS) have led to the identification of hundreds of susceptibility loci across cancers, but the impact of further studies remains uncertain. Here we analyse summary-level data from GWAS of European ancestry across fourteen cancer sites to estimate the number of common susceptibility variants (polygenicity) and underlying effect-size distribution. All cancers show a high degree of polygenicity, involving at a minimum of thousands of loci. We project that sample sizes required to explain 80% of GWAS heritability vary from 60,000 cases for testicular to over 1,000,000 cases for lung cancer. The maximum relative risk achievable for subjects at the 99th risk percentile of underlying polygenic risk scores (PRS), compared to average risk, ranges from 12 for testicular to 2.5 for ovarian cancer. We show that PRS have potential for risk stratification for cancers of breast, colon and prostate, but less so for others because of modest heritability and lower incidence

    Ocular surface microbiota in contact lens users and contact-lens-associated bacterial keratitis

    No full text
    Our objectives were to investigate whether the conjunctival microbiota is altered by contact lens wear and/or bacterial keratitis and to explore the hypothesis that commensals of conjunctival microbiota contribute to bacterial keratitis. Swab samples from both eyes were collected separately from the inferior fornix of the conjunctiva of non-contact-lens users (n(participants) = 28) and contact lens users (n(participants) = 26) and from patients with contact-lens-associated bacterial keratitis (n(participants) = 9). DNA from conjunctival swab samples was analyzed with 16S rRNA gene amplicon sequencing. Pathogens from the corneal infiltrates were identified by cultivation. In total, we identified 19 phyla and 283 genera; the four most abundant genera were Pseudomonas, Enhydrobacter, Staphylococcus, and Cutibacterium. Several pathogens related to bacterial keratitis were identified in the conjunctival microbiota of the whole study population, and the same bacteria were identified by both methods in the conjunctiva and cornea for four patients with contact-lens-associated bacterial keratitis. The overall conjunctival microbiota profile was not altered by contact lens wear or bacterial keratitis; thus, it does not appear to contribute to the development of bacterial keratitis in contact lens users. However, in some individuals, conjunctival microbiota may harbor opportunistic pathogens causing contact-lens-associated bacterial keratitis
    corecore