44 research outputs found

    Inner-Insulated Turbocharger Technology to Reduce Emissions and Fuel Consumption from Modern Engines

    Get PDF
    Reducing emissions from light duty vehicles is critical to meet current and future air quality targets. With more focus on real world emissions from light-duty vehicles, the interactions between engine and exhaust gas aftertreatment are critical. For modern engines, most emissions are generated during the warm-up phase following a cold start. For Diesel engines this is exaggerated due to colder exhaust temperatures and larger aftertreatment systems. The De-NOx aftertreatment can be particularly problematic. Engine manufacturers are required to take measures to address these temperature issues which often result in higher fuel consumption (retarding combustion, increasing engine load or reducing the Diesel air-fuel ratio). In this paper we consider an inner-insulated turbocharger as an alternative, passive technology which aims to reduce the exhaust heat losses between the engine and the aftertreatment. Firstly, the concept and design of the inner-insulated turbocharger is presented. A transient 3D CFD/FEM (Computation Fluid Dynamics/Finite Element Modelling) simulation is conducted and predicts that external heat losses will be reduced by 70% compared to a standard turbocharger, i.e. non-insulated turbocharger. A 1D modelling methodology is then presented for capturing the behaviour of the inner-insulated turbocharger. This is important as conventional models based on isentropic efficiency maps cannot accurately predict turbine outlet temperature. The alternative model is essential to demonstrate benefits in system-level simulations. Experimental results are presented from a transient air-path testing facility to validate the 1D model and demonstrate the characteristics of the inner-insulated turbocharger. Finally, the validated 1D model is used within a powertrain optimization simulation to demonstrate an improvement in fuel consumption for iso-NOx emissions over a low load city cycle of up to 3%. The work was conducted under the THOMSON project which has received funding from the European Union's Horizon 2020 Program for research, technological development and demonstration under Agreement no. 724037. The project aims to increase the market penetration of 48V hybrid vehicles.</p

    Hybrid Powertrain Technology Assessment through an Integrated Simulation Approach

    Get PDF
    Global automotive fuel economy and emissions pressures mean that 48 V hybridisation will become a significant presence in the passenger car market. The complexity of powertrain solutions is increasing in order to further improve fuel economy for hybrid vehicles and maintain robust emissions performance. However, this results in complex interactions between technologies which are difficult to identify through traditional development approaches, resulting in sub-optimal solutions for either vehicle attributes or cost. The results presented in this paper are from a simulation programme focussed on the optimisation of various advanced powertrain technologies on 48 V hybrid vehicle platforms. The technologies assessed include an electrically heated catalyst, an insulated turbocharger, an electric water pump and a thermal management module. The novel simulation approach undertaken uses an integrated toolchain capturing thermal, electrical and mechanical energy usage across all powertrain sub-systems. Through integrating 0-D and 1-D sub-models into a single modelling environment, the operating strategy of the technologies can be optimised while capturing the synergies that exist between them. This approach enables improved and more informed cost/benefit ratios for the technologies to be produced and better attributes by identifying the optimum strategy for the vehicle. The results show the potential for CO2 reductions in the range of 2-5% at no additional cost, through co-optimisation of the technologies in a single simulation environment. The simulation work forms part of the THOMSON project, a collaborative research project aiming to develop cost effective 48 V solutions, in order to reduce the environmental impact of the transportation sector.</p

    PANC Study (Pancreatitis: A National Cohort Study): national cohort study examining the first 30 days from presentation of acute pancreatitis in the UK

    Get PDF
    Abstract Background Acute pancreatitis is a common, yet complex, emergency surgical presentation. Multiple guidelines exist and management can vary significantly. The aim of this first UK, multicentre, prospective cohort study was to assess the variation in management of acute pancreatitis to guide resource planning and optimize treatment. Methods All patients aged greater than or equal to 18 years presenting with acute pancreatitis, as per the Atlanta criteria, from March to April 2021 were eligible for inclusion and followed up for 30 days. Anonymized data were uploaded to a secure electronic database in line with local governance approvals. Results A total of 113 hospitals contributed data on 2580 patients, with an equal sex distribution and a mean age of 57 years. The aetiology was gallstones in 50.6 per cent, with idiopathic the next most common (22.4 per cent). In addition to the 7.6 per cent with a diagnosis of chronic pancreatitis, 20.1 per cent of patients had a previous episode of acute pancreatitis. One in 20 patients were classed as having severe pancreatitis, as per the Atlanta criteria. The overall mortality rate was 2.3 per cent at 30 days, but rose to one in three in the severe group. Predictors of death included male sex, increased age, and frailty; previous acute pancreatitis and gallstones as aetiologies were protective. Smoking status and body mass index did not affect death. Conclusion Most patients presenting with acute pancreatitis have a mild, self-limiting disease. Rates of patients with idiopathic pancreatitis are high. Recurrent attacks of pancreatitis are common, but are likely to have reduced risk of death on subsequent admissions. </jats:sec

    Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial.

    Get PDF
    BACKGROUND: Remote ischaemic conditioning with transient ischaemia and reperfusion applied to the arm has been shown to reduce myocardial infarct size in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). We investigated whether remote ischaemic conditioning could reduce the incidence of cardiac death and hospitalisation for heart failure at 12 months. METHODS: We did an international investigator-initiated, prospective, single-blind, randomised controlled trial (CONDI-2/ERIC-PPCI) at 33 centres across the UK, Denmark, Spain, and Serbia. Patients (age >18 years) with suspected STEMI and who were eligible for PPCI were randomly allocated (1:1, stratified by centre with a permuted block method) to receive standard treatment (including a sham simulated remote ischaemic conditioning intervention at UK sites only) or remote ischaemic conditioning treatment (intermittent ischaemia and reperfusion applied to the arm through four cycles of 5-min inflation and 5-min deflation of an automated cuff device) before PPCI. Investigators responsible for data collection and outcome assessment were masked to treatment allocation. The primary combined endpoint was cardiac death or hospitalisation for heart failure at 12 months in the intention-to-treat population. This trial is registered with ClinicalTrials.gov (NCT02342522) and is completed. FINDINGS: Between Nov 6, 2013, and March 31, 2018, 5401 patients were randomly allocated to either the control group (n=2701) or the remote ischaemic conditioning group (n=2700). After exclusion of patients upon hospital arrival or loss to follow-up, 2569 patients in the control group and 2546 in the intervention group were included in the intention-to-treat analysis. At 12 months post-PPCI, the Kaplan-Meier-estimated frequencies of cardiac death or hospitalisation for heart failure (the primary endpoint) were 220 (8·6%) patients in the control group and 239 (9·4%) in the remote ischaemic conditioning group (hazard ratio 1·10 [95% CI 0·91-1·32], p=0·32 for intervention versus control). No important unexpected adverse events or side effects of remote ischaemic conditioning were observed. INTERPRETATION: Remote ischaemic conditioning does not improve clinical outcomes (cardiac death or hospitalisation for heart failure) at 12 months in patients with STEMI undergoing PPCI. FUNDING: British Heart Foundation, University College London Hospitals/University College London Biomedical Research Centre, Danish Innovation Foundation, Novo Nordisk Foundation, TrygFonden

    Inhibition of miR-15 Protects Against Cardiac Ischemic Injury

    No full text
    RATIONALE:Myocardial infarction (MI) is a leading cause of death worldwide. Because endogenous cardiac repair mechanisms are not sufficient for meaningful tissue regeneration, MI results in loss of cardiac tissue and detrimental remodeling events. MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression in a sequence dependent manner. Our previous data indicate that miRNAs are dysregulated in response to ischemic injury of the heart and actively contribute to cardiac remodeling after MI. OBJECTIVE:This study was designed to determine whether miRNAs are dysregulated on ischemic damage in porcine cardiac tissues and whether locked nucleic acid (LNA)-modified anti-miR chemistries can target cardiac expressed miRNAs to therapeutically inhibit miR-15 on ischemic injury. METHODS AND RESULTS:Our data indicate that the miR-15 family, which includes 6 closely related miRNAs, is regulated in the infarcted region of the heart in response to ischemia-reperfusion injury in mice and pigs. LNA-modified chemistries can effectively silence miR-15 family members in vitro and render cardiomyocytes resistant to hypoxia-induced cardiomyocyte cell death. Correspondingly, systemic delivery of miR-15 anti-miRs dose-dependently represses miR-15 in cardiac tissue of both mice and pigs, whereas therapeutic targeting of miR-15 in mice reduces infarct size and cardiac remodeling and enhances cardiac function in response to MI. CONCLUSIONS:Oligonucleotide-based therapies using LNA-modified chemistries for modulating cardiac miRNAs in the setting of heart disease are efficacious and validate miR-15 as a potential therapeutic target for the manipulation of cardiac remodeling and function in the setting of ischemic injury

    Enhanced and stem-cell-compatible effects of nature-inspired antimicrobial nanotopography and antimicrobial peptides to combat implant-associated infection

    Get PDF
    Nature-inspired antimicrobial surfaces and antimicrobial peptides (AMPs) have emerged as promising strategies to combat implant-associated infections. In this study, a bioinspired antimicrobial peptide was functionalized onto a nanospike (NS) surface by physical adsorption with the aim that its gradual release into the local environment would enhance inhibition of bacterial growth. Peptide adsorbed on a control flat surface exhibited different release kinetics compared to the nanotopography, but both surfaces showed excellent antibacterial properties. Functionalization with peptide at micromolar concentrations inhibited Escherichia coli growth on the flat surface, Staphylococcus aureus growth on the NS surface, and Staphylococcus epidermidis growth on both the flat and NS surfaces. Based on these data, we propose an enhanced antibacterial mechanism whereby AMPs can render bacterial cell membranes more susceptible to nanospikes, and the membrane deformation induced by nanospikes can increase the surface area for AMPs membrane insertion. Combined, these effects enhance bactericidal activity. Since functionalized nanostructures are highly biocompatible with stem cells, they make promising candidates for next generation antibacterial implant surfaces
    corecore