4,333 research outputs found

    MEMS 411: CNC Fabric Dispenser

    Get PDF
    This project aims to help Mary Ruppert-Stroescu with her zero-waste fashion project. The goal of this tool is to help Mary efficiently lay down fabric across a sheet of sticky paper to make a yard of reused fabric. The goal of our team was to create a machine that can work alongside Mary, rather than having her spend all her time at the machine. We wanted to make a machine that can work independently of Mary, so that she can focus her time on other things. 100s of lbs of fabric waste is part of American today. Mary\u27s mission is to be able to reused used and unwanted fabric, and make it into a new article of clothing. Mary has created a multi-step process that allows her to take fabric scarps, and turn them into new yard of fabric. This process includes laying strips of fabric meticulously on a sticky backing that is then sewn together. The part that takes the most time for Mary, and what she considers the bottle-neck of her project, is that laying the fabric takes a lot of time. She would like an invention or tool that would aid her in laying fabric down faster. Our team wanted to work outside of the box. Rather than just make a simple tape dispenser mechanism, we wanted to generate a fully autonomous machine that would lay fabric for her in many rows. This was done by making a metal frame, 3D printed components, electronics, and code to generate a machine similar to a CNC or 3D printer, that moves a head and lays fabric on the table

    A comparative study of the buffeting properties of FRP and steel box girder cable-stayed bridges

    Get PDF
    2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Quantum fluctuations in high field magnetization of 2D square lattice J1-J2 antiferromagnets

    Full text link
    The J1-J2 square lattice Heisenberg model with spin S=1/2 has three phases with long-range magnetic order and two unconventionally ordered phases depending on the ratio of exchange constants. It describes a number of recently found layered vanadium oxide compounds. A simple means of investigating the ground state is the study of the magnetization curve and high-field susceptibility. We discuss these quantities by using the spin-wave theory and the exact diagonalization in the whole J1-J2 plane. We compare both results and find good overall agreement in the sectors of the phase diagram with magnetic order. Close to the disordered regions the magnetization curve shows strong deviations from the classical linear behaviour caused by large quantum fluctuations and spin-wave approximation breaks down. On the FM side (J1<0) where one approaches the quantum gapless spin nematic ground state this region is surprisingly large. We find that inclusion of second order spin-wave corrections does not lead to fundamental improvement. Quantum corrections to the tilting angle of the ordered moments are also calculated. They may have both signs, contrary to the always negative first order quantum corrections to the magnetization. Finally we investigate the effect of the interlayer coupling and find that the quasi-2D picture remains valid up to |J_\perp/J1| ~ 0.3.Comment: 13 pages, 6figure

    Generation of cloned transgenic pigs rich in omega-3 fatty acids

    Get PDF
    Meat products are generally low in omega-3 (n-3) fatty acids, which are beneficial to human health. We describe the generation of cloned pigs that express a humanized Caenorhabditis elegans gene, fat-1, encoding an n-3 fatty acid desaturase. The hfat-1 transgenic pigs produce high levels of n-3 fatty acids from n-6 analogs, and their tissues have a significantly reduced ratio of n-6/n-3 fatty acids (P < 0.001). © 2006 Nature Publishing Group

    High-transition-temperature superconductivity in the absence of the magnetic-resonance mode

    Full text link
    The fundamental mechanism that gives rise to high-transition-temperature (high-Tc) superconductivity in the copper oxide materials has been debated since the discovery of the phenomenon. Recent work has focussed on a sharp 'kink' in the kinetic energy spectra of the electrons as a possible signature of the force that creates the superconducting state. The kink has been related to a magnetic resonance and also to phonons. Here we report that infrared spectra of Bi2Sr2CaCu2O(8+d), (Bi-2212) show that this sharp feature can be separated from a broad background and, interestingly, weakens with doping before disappearing completely at a critical doping level of 0.23 holes per copper atom. Superconductivity is still strong in terms of the transition temperature (Tc approx 55 K), so our results rule out both the magnetic resonance peak and phonons as the principal cause of high-Tc superconductivity. The broad background, on the other hand, is a universal property of the copper oxygen plane and a good candidate for the 'glue' that binds the electrons.Comment: 4 pages, 3 figure

    Pharmacological screening using an FXN-EGFP cellular genomic reporter assay for the therapy of Friedreich ataxia

    Get PDF
    Copyright @ 2013 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Friedreich ataxia (FRDA) is an autosomal recessive disorder characterized by neurodegeneration and cardiomyopathy. The presence of a GAA trinucleotide repeat expansion in the first intron of the FXN gene results in the inhibition of gene expression and an insufficiency of the mitochondrial protein frataxin. There is a correlation between expansion length, the amount of residual frataxin and the severity of disease. As the coding sequence is unaltered, pharmacological up-regulation of FXN expression may restore frataxin to therapeutic levels. To facilitate screening of compounds that modulate FXN expression in a physiologically relevant manner, we established a cellular genomic reporter assay consisting of a stable human cell line containing an FXN-EGFP fusion construct, in which the EGFP gene is fused in-frame with the entire normal human FXN gene present on a BAC clone. The cell line was used to establish a fluorometric cellular assay for use in high throughput screening (HTS) procedures. A small chemical library containing FDA-approved compounds and natural extracts was screened and analyzed. Compound hits identified by HTS were further evaluated by flow cytometry in the cellular genomic reporter assay. The effects on FXN mRNA and frataxin protein levels were measured in lymphoblast and fibroblast cell lines derived from individuals with FRDA and in a humanized GAA repeat expansion mouse model of FRDA. Compounds that were established to increase FXN gene expression and frataxin levels included several anti-cancer agents, the iron-chelator deferiprone and the phytoalexin resveratrol.Muscular Dystrophy Association (USA), the National Health and Medical Research Council (Australia), the Friedreich’s Ataxia Research Alliance (USA), the Brockhoff Foundation (Australia), the Friedreich Ataxia Research Association (Australasia), Seek A Miracle (USA) and the Victorian Government’s Operational Infrastructure Support Program

    Geometry and kinematics for a spherical-base integrated parallel mechanism

    Get PDF
    Parallel mechanisms, in general, have a rigid base and a moving platform connected by several limbs. For achieving higher mobility and dexterity, more degrees of freedom are introduced to the limbs. However, very few researchers focus on changing the design of the rigid base and making it foldable and reconfigurable to improve the performance of the mechanism. Inspired by manipulating an object with a metamorphic robotic hand, this paper presents for the first time a parallel mechanism with a reconfigurable base. This novel spherical-base integrated parallel mechanism has an enlarged workspace compared with traditional parallel manipulators. Evolution and structure of the proposed parallel mechanism is introduced and the geometric constraint of the mechanism is investigated based on mechanism decomposition. Further, kinematics of the proposed mechanism is reduced to the solution of a univariate polynomial of degree 8. Moreover, screw theory based Jacobian is presented followed by the velocity analysis of the mechanism

    Prognostic factor from MR spectroscopy in rat with astrocytic tumour during radiation therapy

    Get PDF
    Objective: To investigate the relationship between the tumour volume and metabolic rates of astrocytic tumours using MR spectroscopy (MRS) during radiation therapy (RT). Methods: 12 healthy male Sprague-Dawley® rats (Sprague–Dawley Animal Company, Madison, WI) were used, and a tumour model was created through injecting C6 tumour cells into the right caudate nuclei of the rats. Tumours grew for 18 days after the injection and before the imaging study and radiation treatment. MRS was performed with two-dimensional multivoxel point-resolved spectroscopy sequence using a GE Signa VH/i 3.0-T MR scanner (GE Healthcare, Milwaukee, WI) equipped with rat-special coil. RT was given on the 19th day with a dose of 4 Gy in one single fraction. The image examinations were performed before RT, and on the 4th, 10th, 14th and 20th days after treatment, respectively. GE FuncTool software package (GE Healthcare) was used for post-processing of spectrum. Results: Metabolic ratios of serial MRS decrease progressively with time after RT. Choline-containing components (Cho)/creatine and creatine phosphate (Cr) ratios immediately prior to RT differed significantly from those on the 10th, 14th and 20th days after RT; both Cho/N-acetyl aspartate (NAA) ratios and NAA/Cr ratios immediately prior to RT differed significantly from those on the 14th and 20th days after RT. A positive correlation between changes of tumour volume and changes of Cho/Cr, lipid and lactate/Cr and glutamate plus glutamine/Cr ratio was observed on the 4th day after RT. Conclusion: MRS provides potential in monitoring tumour response during RT, and the imaging biomarkers predict the response of astrocytic tumours to treatment. Advances in knowledge: MRS is combined with both tumour size and Ki-67 labelling index to access tumour response to radiation.ECU Open Access Publishing Support Fun

    Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria)

    Get PDF
    Modern hard corals (Class Hexacorallia; Order Scleractinia) are widely studied because of their fundamental role in reef building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders, families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia) might be imbedded within the stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families) and various outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b), with analyses of nuclear genes (ßtubulin, ribosomal DNA) of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly divergent "robust" and "complex" clades. However, the recent suggestion that corallimorpharians are true corals that have lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also often by morphological characters which had been ignored or never noted previously. The concordance of molecular characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as the potential to trace the evolutionary history of this ecologically important group using fossils

    Proximity of Iron Pnictide Superconductors to a Quantum Tricritical Point

    Get PDF
    We determine the nature of the magnetic quantum critical point in the doped LaFeAsO using a set of constrained density functional calculations that provide ab initio coefficients for a Landau order parameter analysis. The system turns out to be remarkably close to a quantum tricritical point, where the nature of the phase transition changes from first to second order. We compare with the effective field theory and discuss the experimental consequences.Comment: 4 pages, 4 figure
    corecore