1,137 research outputs found

    No-passing Rule in the Ground State Evolution of the Random-Field Ising Model

    Full text link
    We exactly prove the no-passing rule in the ground state evolution of the random-field Ising model (RFIM) with monotonically varying external field. In particular, we show that the application of the no-passing rule can speed up the calculation of the zero-temperature equilibrium M(H)M(H) curve dramatically.Comment: 7 pages, 4 figure

    Hysteresis and avalanches in the T=0 random-field Ising model with 2-spin-flip dynamics

    Get PDF
    We study the non-equilibrium behavior of the three-dimensional Gaussian random-field Ising model at T=0 in the presence of a uniform external field using a 2-spin-flip dynamics. The deterministic, history-dependent evolution of the system is compared with the one obtained with the standard 1-spin-flip dynamics used in previous studies of the model. The change in the dynamics yields a significant suppression of coercivity, but the distribution of avalanches (in number and size) stays remarkably similar, except for the largest ones that are responsible for the jump in the saturation magnetization curve at low disorder in the thermodynamic limit. By performing a finite-size scaling study, we find strong evidence that the change in the dynamics does not modify the universality class of the disorder-induced phase transition.Comment: 9 pages, 10 figure

    Noise Predictions for STM in Systems with Local Electron Nematic Order

    Get PDF
    We propose that thermal noise in local stripe orientation should be readily detectable via STM on systems in which local stripe orientations are strongly affected by quenched disorder. Stripes, a unidirectional, nanoscale modulation of electronic charge, are strongly affected by quenched disorder in two-dimensional and quasi-two-dimensional systems. While stripe orientations tend to lock to major lattice directions, dopant disorder locally breaks rotational symmetry. In a host crystal with otherwise C4C_4 rotational symmetry, stripe orientations in the presence of quenched disorder map to the random field Ising model. While the low temperature state of such a system is generally a stripe glass in two dimensional or strongly layered systems, as the temperature is raised, stripe orientational fluctuations become more prevalent. We propose that these thermally excited fluctuations should be readily detectable in scanning tunneling spectroscopy as {\em telegraph noise} in the high voltage part of the local I(V)I(V) curves. We predict the spatial, temporal, and thermal evolution of such noise, including the circumstances under which such noise is most likely to be observed. In addition, we propose an in-situ test, amenable to any local scanning probe, for assessing whether such noise is due to correlated fluctuations rather than independent switchers.Comment: 8 pages, 8 figure

    Multilevel Preconditioning of Discontinuous-Galerkin Spectral Element Methods, Part I: Geometrically Conforming Meshes

    Get PDF
    This paper is concerned with the design, analysis and implementation of preconditioning concepts for spectral Discontinuous Galerkin discretizations of elliptic boundary value problems. While presently known techniques realize a growth of the condition numbers that is logarithmic in the polynomial degrees when all degrees are equal and quadratic otherwise, our main objective is to realize full robustness with respect to arbitrarily large locally varying polynomial degrees degrees, i.e., under mild grading constraints condition numbers stay uniformly bounded with respect to the mesh size and variable degrees. The conceptual foundation of the envisaged preconditioners is the auxiliary space method. The main conceptual ingredients that will be shown in this framework to yield "optimal" preconditioners in the above sense are Legendre-Gauss-Lobatto grids in connection with certain associated anisotropic nested dyadic grids as well as specially adapted wavelet preconditioners for the resulting low order auxiliary problems. Moreover, the preconditioners have a modular form that facilitates somewhat simplified partial realizations. One of the components can, for instance, be conveniently combined with domain decomposition, at the expense though of a logarithmic growth of condition numbers. Our analysis is complemented by quantitative experimental studies of the main components.Comment: 41 pages, 11 figures; Major revision: rearrangement of the contents for better readability, part on wavelet preconditioner adde

    Barkhausen noise in the Random Field Ising Magnet Nd2_2Fe14_{14}B

    Get PDF
    With sintered needles aligned and a magnetic field applied transverse to its easy axis, the rare-earth ferromagnet Nd2_2Fe14_{14}B becomes a room-temperature realization of the Random Field Ising Model. The transverse field tunes the pinning potential of the magnetic domains in a continuous fashion. We study the magnetic domain reversal and avalanche dynamics between liquid helium and room temperatures at a series of transverse fields using a Barkhausen noise technique. The avalanche size and energy distributions follow power-law behavior with a cutoff dependent on the pinning strength dialed in by the transverse field, consistent with theoretical predictions for Barkhausen avalanches in disordered materials. A scaling analysis reveals two regimes of behavior: one at low temperature and high transverse field, where the dynamics are governed by the randomness, and the second at high temperature and low transverse field where thermal fluctuations dominate the dynamics.Comment: 16 pages, 7 figures. Under review at Phys. Rev.

    Hysteresis and Noise from Electronic Nematicity in High Temperature Superconductors

    Get PDF
    An electron nematic is a translationally invariant state which spontaneously breaks the discrete rotational symmetry of a host crystal. In a clean square lattice, the electron nematic has two preferred orientations, while dopant disorder favors one or the other orientations locally. In this way, the electron nematic in a host crystal maps to the random field Ising model (RFIM). Since the electron nematic has anisotropic conductivity, we associate each Ising configuration with a resistor network, and use what is known about the RFIM to predict new ways to test for electron nematicity using noise and hysteresis. In particular, we have uncovered a remarkably robust linear relation between the orientational order and the resistance anisotropy which holds over a wide range of circumstances.Comment: References added; minor wording change

    Transverse Meissner Physics of Planar Superconductors with Columnar Pins

    Get PDF
    The statistical mechanics of thermally excited vortex lines with columnar defects can be mapped onto the physics of interacting quantum particles with quenched random disorder in one less dimension. The destruction of the Bose glass phase in Type II superconductors, when the external magnetic field is tilted sufficiently far from the column direction, is described by a poorly understood non-Hermitian quantum phase transition. We present here exact results for this transition in (1+1)-dimensions, obtained by mapping the problem in the hard core limit onto one-dimensional fermions described by a non-Hermitian tight binding model. Both site randomness and the relatively unexplored case of bond randomness are considered. Analysis near the mobility edge and near the band center in the latter case is facilitated by a real space renormalization group procedure used previously for Hermitian quantum problems with quenched randomness in one dimension.Comment: 23 pages, 22 figure

    Space Representation of Stochastic Processes with Delay

    Get PDF
    We show that a time series xtx_t evolving by a non-local update rule xt=f(xt−n,xt−k)x_t = f (x_{t-n},x_{t-k}) with two different delays k<nk<n can be mapped onto a local process in two dimensions with special time-delayed boundary conditions provided that nn and kk are coprime. For certain stochastic update rules exhibiting a non-equilibrium phase transition this mapping implies that the critical behavior does not depend on the short delay kk. In these cases, the autocorrelation function of the time series is related to the critical properties of directed percolation.Comment: 6 pages, 8 figure
    • …
    corecore