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Abstract This paper is concerned with the design, analysis and implementation of preconditioning con-
cepts for spectral DG discretizations of elliptic boundary value problems. The far term goal is to obtain
robust solvers for the “fully flexible” case. By this we mean Discontinuous Galerkin schemes on locally re-
fined quadrilateral or hexahedral partitions with hanging nodes and variable polynomial degrees that could,
in principle, be arbitrarily large only subject to some weak grading constraints. In this paper, as a first
step, we focus on varying arbitrarily large degrees while keeping the mesh geometrically conforming since
this will be seen to exhibit already some essential obstructions. The conceptual foundation of the envisaged
preconditioners is the auxiliary space method, or in fact, an iterated variant of it. The main conceptual
pillars that will be shown in this framework to yield “optimal” preconditioners are Legendre-Gauß-Lobatto
grids in connection with certain associated anisotropic nested dyadic grids. Here “optimal” means that
the preconditioned systems exhibit uniformly bounded condition numbers. Moreover, the preconditioners
have a modular form that facilitates somewhat simplified partial realizations at the expense of a moderate
loss of efficiency. Our analysis is complemented by careful quantitative experimental studies of the main
components.

AMS subject classification 65N35, 65N55, 65N30, 65N22, 65F10, 65F08

Keywords Discontinuous Galerkin discretization for elliptic problems, interior penalty method, locally
refined meshes, variable polynomial degrees, auxiliary space method, Gauß-Lobatto grids, dyadic grids.

1 Introduction
Attractive features of discontinuous Galerkin (DG) discretizations are on one hand their versatility
regarding a variety of different problem types as well as on the other hand their flexibility regarding
local mesh refinement and even locally varying the order of the discretization. While initially the
main focus has been on transport problems like hyperbolic conservation laws an increased attention
has recently been paid to diffusion problems which naturally enter the picture in more complex
applications like the compressible or incompressible Navier-Stokes equations. Well-posedness and
stability issues are by now fairly well understood [4, 3] although these studies refer primarily to
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uniform fixed degrees and conforming domain partitions, see, e.g., [11, 12] for locally refined meshes
and variable degrees.
Of course, the option of choosing very high polynomial degrees is of particular interest for diffusion

problems since under certain circumstances highly regular, even analytic solutions occur that are
best treated by spectral discretizations [15]. The fact that in most practical situations a very high
regularity is encountered only in part of the domain has led to the concept of hp-discretizations which
typically come about as conforming methods. However, the DG framework seems to be particularly
well suited for accommodating strongly varying polynomial degrees (see, e.g., [24, 26]) in combination
with local mesh refinements admitting hanging nodes.
While stability of such discretizations can be ensured, as will be seen below, essentially follow-

ing standard lines, the issue of efficiently solving the resulting linear systems of equations seems to
be much less clear. For quasi-uniform meshes and uniform (low) polynomial degrees a multigrid
scheme, proposed in [18], (covering actually convection-diffusion problems as well) does give rise
to uniformly bounded condition numbers for diffusive problems provided that (i) the underlying
hierarchy of meshes is quasi-uniform and (ii) the solution exhibits a certain (weak) regularity. This
scheme has been extended in [19] to locally refined meshes showing a similar performance without a
theoretical underpinning though. Domain decomposition preconditioners investigated in [1, 2], give
rise to only moderately growing condition numbers. A two-level scheme in the sense of the auxiliary
space method (see, e.g., [7, 22, 28]) has been proposed in [17] and shown to exhibit mesh-independent
convergence again on quasi-uniform conforming meshes with a fixed uniform polynomial degree. In
the framework of the auxiliary space method preconditioners providing uniformly bounded condi-
tion numbers for locally refined meshes under weak grading constraints and variable but uniformly
bounded polynomial degrees have been developed in [11, 12], but again the results are valid only for
a fixed bound on the polynomial degrees with constants depending on that bound.
The state of the art concerning preconditioners that are robust with respect to the polynomial

degrees is somewhat heterogeneous. Meanwhile a fairly good understanding has been developed for
pure spectral discretizations, i.e. for a single polynomial patch [15, 14, 23, 6]. In the DG context the
current results seem to draw primarily from domain decomposition concepts, see, e.g., [25]. To our
knowledge they are subject to two type of constraints, namely to geometrically conforming meshes
and to uniform poynomial degrees p. The best known results seem to offer bounds on condition
numbers of only logarithmic growth in p.
The objective of this paper is therefore to develop and analyze preconditioners for what we call

Spectral-Element-DG discretizations, eventually exploiting the full flexibility potential of the DG
concept, meaning arbitrarily large varying polynomial degrees and local refinements with hanging
nodes, both only subject to mild grading constraints. The central theoretical challenge hings on
the question how to design preconditioners that give rise to uniformly bounded condition numbers
in the most flexible setting described above. We shall address this challenge in the context of the
auxiliary space method [22, 27, 28]. However, to keep the paper at an acceptable length, as a
first step we confine the discussion here on geometrically conforming meshes, i.e., hanging nodes
are avoided but varying polynomial degrees of arbitrary size are permitted. In fact, some essential
obstructions are already encountered in this case for the following reason. First, on the basis of the
experience in the context of spectral methods, in our opinion the most promising avenue towards
fully robust preconditioners with respect to polynomial degrees is to employ concepts centering
around Legendre-Gauß-Lobatto grids (LGL-grids). As soon as the degrees on adjacent polynomial
patches differ the corresponding LGL-grids do not match at the patch interfaces (the more so when
dealing with hanging nodes) since LGL-grids are not nested. This turns out to have far reaching
consequences in several respects, namely properly dealing with jump terms on the patch interfaces
but also regarding the efficient solution of the patchwise problems in case of very large degrees. One
of the remedies we propose is to employ auxiliary spaces based on certain anisotropic dyadic grids
which are associated with the LGL-grids but which in addition are nested. Therefore, the concepts
developed for the geometrically conforming case will be similarly relevant in the general case as well.
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Aside from these principal theoretical issues the second main theme of the present studies is to
explore the quantitative performance of the main building blocks entering such preconditioners.
The layout of the paper is as follows. After formulating in Sect. 2 our model problem and the

basic ingredients concerning Legendre-Gauß-Lobatto (LGL)-grids, we recall in Sect. 3 the relevant
conditions of the auxiliary space method. Sect. 4 offers a brief orientation concerning the subsequent
development of a two-stage preconditioner. The first stage, using high-order conforming polynomials
as auxiliary space is treated in Sect. 5. As a preparation of the subsequent second stage we discuss
in Sect. 6 a major ingredient of our approach, namely certain hierarchies of nested dyadic grids
associated with LGL-grids in a way that mutual interpolation between low order finite elements on
these grids is stable in L2 and H1. Based on these findings we develop and analyze in Sect. 7 stage
II of our preconditioner where the new auxiliary spaces are built by low-order finite elements on
dyadic grids. We conclude in Sect. 8 with detailed numerical studies of the various ingredients of
the preconditioner to assess its quantitative performance in dependence of the various parameters
entering the scheme. In particular, in Sect. 8.3.1 we discuss efficient ways of applying the “relaxation”
operator defined by the auxiliary space method.
Throughout the paper we shall employ the following notational convention. By a . b we mean

that the quantity a can be bounded by fixed constant multiple of b, independent on the parameters
a and b may depend on. Likewise a ' b means a . b and b . a.

2 Formulation of SE-DG schemes
In this section, we introduce the basic high-order DG discretization of a second-order model problem,
as well as several variants of it. We start by recalling some essential concepts about Legendre methods
and Legendre Gauß-Lobatto grids on a single Cartesian element.

2.1 (Hyper-)rectangles, polynomial spaces and LGL grids
Let I = [a, b] be any bounded interval, of size H = b − a. For any fixed integer p ≥ 1, let Pp(I) be
the space of the restrictions to I of the algebraic polynomials of degree ≤ p on the real line. Let
a = ξ0 < · · · < ξj−1 < ξj < · · · < ξp = b be the Legendre-Gauß-Lobatto (LGL) quadrature nodes of
order p in I, for which there exist weights w0 < · · · < wj−1 < wj < · · · < wp such that

p∑
j=0

v(ξj)wj =
∫
I

v(x) dx ∀v ∈ P2p−1(I) . (2.1)

We will denote by Gp(I) the set of such nodes, which will be referred to as the LGL grid in I.
Obviously, any v ∈ Pp(I) is uniquely determined by its values on Gp(I). We recall that nodes
and weights are classically defined on the reference interval Î = [−1, 1], as ξ̂j , ŵj , resp.. By affine
transformation, one has ξj = a+H(ξ̂j + 1)/2 and wj = (H/2)ŵj . We also recall that weights with
index j close to 0 or p satisfy wj ' Hp−2 (in particular, w0 = wp = H(p(p+1))−1), whereas weights
with index j close to p/2 satisfy wj ' Hp−1. Yet, the variation in the order of magnitude is smooth,
as made precise by the estimates

1 . min
1≤j≤p

wj−1

wj
≤ max

1≤j≤p

wj−1

wj
. 1 , (2.2)

which hold uniformly in j, p and H (see, e.g., [13, 23]). A fundamental property for the sequel (see,
e.g., [15]) is that the bilinear form

(u, v)0,I,p =
p∑
j=0

u(ξj)v(ξj)wj (2.3)
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is an inner product in Pp(I), which induces therein a norm uniformly equivalent to the L2-norm:

‖v‖0,I ≤ ‖v‖0,I,p ≤
√

3‖v‖0,I ∀v ∈ Pp(I) . (2.4)

Furthermore, we shall make frequent use of the following “trace” inequality: for any v ∈ Pp(I), one
has

|v(e)| ≤ p+ 1√
H
‖v‖0,I , (2.5)

where e ∈ {a, b} denotes any endpoint of I. This follows, by a scaling argument, from the expansion
v(x) =

∑p
k=0 v̂kLk(x) in Legendre orthogonal polynomials on the reference interval Î, using the

Cauchy-Schwarz inequality together with the properties |Lk(±1)| = 1 and ‖Lk‖20,Î = 2/(2k + 1).
Another useful property will be a refined version of the classical inverse inequality ‖v′‖0,I .

p2

H
‖v‖0,I which holds for all v ∈ Pp(I), and reads as follows:

‖v′‖0,I .

 p∑
j=0

v2(ξj)w−1
j

1/2

∀v ∈ Pp(I) . (2.6)

A proof will be given in Sect. 6.
Next, let d ≥ 1 denote the space dimension of interest. Given d bounded intervals Ik, 1 ≤ k ≤ d, of

size Hk and carrying polynomials of degree pk, we form the corresponding d-tuples p = (p1, . . . , pd)
and H = (H1, . . . ,Hd), we define the tensor-product space of polynomials of degree up to pk in the
k-th coordinate on the (hyper-)rectangle R =×d

k=1 Ik as

Qp(R) =
d⊗
k=1

Ppk
(Ik) . (2.7)

Occasionally, we write p = p(R) and H = H(R).
Given any integer 0 ≤ l ≤ d, let Fl(R) denote the set of all l-dimensional facets of R, i.e., the

subsets of ∂R obtained by freezing d−l coordinates to one of the endpoint values of the corresponding
intervals. Thus, F0(R) is the set of the 2d vertices of R, Fd−1(R) is the set of all faces of R, whereas
Fd(R) = {R}. Obviously, if v ∈ Qp(R) and F ∈ Fl(R) for some 1 ≤ l ≤ d, then v|F ∈ Qp∗(F ), where
p∗ = p∗(F ) is obtained from p by dropping the components corresponding to the frozen coordinates.
Polynomials in Qp(R) are uniquely determined through their values at the tensorial LGL-grid in

R

Gp(R) =
d×
k=1
Gpk

(Ik) = {ξ = (ξ1,j1 , ξ2,j2 , . . . , ξd,jd
) for 0 ≤ jk ≤ pk, 1 ≤ k ≤ d} , (2.8)

where the ξk,jk
are the nodes of the LGL quadrature formula of order pk in Ik. Introducing the

product weight wξ = w1,j1w2,j2 · · ·wd,jd
associated to each node ξ ∈ Gp(R), we obtain the quadrature

formula ∑
ξ∈Gp(R)

v(ξ)wξ =
∫
R

v(x) dx ∀v ∈ Qp(R) . (2.9)

Then, the discrete inner product in Qp(R)

(u, v)0,R,p =
∑

ξ∈Gp(R)

u(ξ)v(ξ)wξ (2.10)

defines a norm which, thanks to (2.4), is uniformly equivalent to the L2-norm, i.e.,

‖v‖0,R ≤ ‖v‖0,R,p ≤
(√

3
)d‖v‖0,R ∀v ∈ Qp(R) . (2.11)
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LGL-grids as well as discrete inner products and norms restrict to any facet of R in the obvious way,
yielding objects with analogous properties (see Sect. 5.1 for more details).
Finally, applying the bound (2.5) and tensorizing in the remaining directions, we easily get the

following “trace inequality”, which will be crucial in the analysis of the DG discretization.

Property 2.1. Let F ∈ Fd−1(R) be a face of R, orthogonal to the k-th direction, for some 1 ≤ k ≤ d.
Then,

‖v‖0,F ≤
pk + 1√
Hk

‖v‖0,R ∀v ∈ Qp(R) . (2.12)

2.2 Model problem and discretizations
We formulate now various versions of what we call Spectral-Element Discontinuous-Galerkin (SE-DG)
discretizations for second order boundary value problems. In principle, the developments presented
below apply under fairly weak assumptions on the problem parameters. To keep the technical level
of the exposition as low as possible we confine the discussion to the model problem

−∆u = f in Ω , u = 0 on ∂Ω , (2.13)

where Ω ⊂ Rd, d ≥ 2, is a bounded Lipschitz domain with piecewise smooth boundary and f ∈ L2(Ω).
Such domains can be partitioned into images of (hyper-)rectangles through smooth mappings (such
as iso/sub-parametric mappings, or Gordon-Hall transforms). Again, in order to keep technicalities
at a possibly low level, it suffices to treat unions of (hyper-)rectangles, i.e., we assume that the
closure of Ω can be partitioned into the union of a finite collection R of (hyper-)rectangles R, which
overlap at most through parts of their boundaries. Precisely, in this paper we will consider only
geometrically conforming partitions R, characterized by the fact that any nonempty intersection
between two elements R and R′ in R is an l-facet for both of them, for some 0 ≤ l ≤ d − 1. An
example of a 2D conforming patch of elements is given in Fig. 1. It will be convenient to introduce
the complex

Fl :=
⋃
R∈R
Fl(R)

of all l-dimensional faces associated with the macro-mesh consisting of the elements R ∈ R.

Figure 1: A geometrically conforming patch of elements in R2, with the corresponding LGL-grids

Recall from Sect. 2.1 that the k-th component of the vector H = H(R) ∈ Rd+ is the k-th side
length of R. Likewise p = p(R) ∈ Nd denotes the vector of coordinatewise polynomial degrees of
an element of Qp(R). The vector-valued, piecewise constant functions H and p are thus defined
throughout Ω forming the function δ = (H, p) which collects the approximation parameters for the
chosen DG-SE discretization.
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We assume the aspect ratios of the elements are uniformly bounded and that the distribution of
polynomial degrees within each R as well as between adjacent elements R− and R+ is graded in the
sense that

maxkHk(R)
minkHk(R) . 1, maxk pk(R)

mink pk(R) . 1, max
±

max
k

pk(R±)
pk(R∓) . 1, R ∈ R. (2.14)

In particular, this implies that our meshes are quasi-uniform.

The approximation space for the DG-SE discretization is defined as

Vδ = {v ∈ L2(Ω) : ∀R ∈ R, there exists vR ∈ Qp(R) such that v|R = vR a.e.} ; (2.15)

note that any v ∈ Vδ can be identified with the vector of polynomial functions (vR)R∈R.
To introduce the standard notation for DG approximations of Problem (2.13), assume that F ∈
Fd−1 is an interior face shared by two elements which we denote by R− and R+. If v is a piecewise
polynomial function defined on both sides of F , which takes values v− in R− and v+ in R+, then
its jump [v]F across F and its average {v}F on F are defined as

[v]F = nR−,F v−|F + nR+,F v
+
|F , {v}F = 1

2

(
v−|F + v+

|F

)
,

respectively, where nR−,F = −nR+,F denote the unit normal vectors on F pointing to the exterior
of R−. Taking the homogeneous Dirichlet boundary condition into account, we set [v]F = nR,F v|F
and {v}F = v|F when F ⊂ ∂Ω.
Within this setting, we consider the Symmetric Interior-Penalty Discontinuous Galerkin Spectral-

Element discretization of Problem (2.13) defined as (see [3, 4]): find u ∈ Vδ such that

a∗δ(u, v) = (f, v)0,Ω ∀v ∈ Vδ , (2.16)

where the bilinear form a∗δ on Vδ × Vδ is given by

a∗δ(u, v) =
∑
R∈R

(∇u,∇v)0,R +
∑

F∈Fd−1

(
− ({∇u}, [v])0,F − ({∇v}, [u])0,F + γωF ([u], [v])0,F

)
. (2.17)

The weights ωF are defined as follows. Assume that the interface F is orthogonal to the k-th
direction. If F is shared by two elements R− and R+, then we set

ωF = max
(

(pk(R−) + 1)2

Hk(R−) ,
(pk(R+) + 1)2

Hk(R+)

)
, (2.18)

where the particular choice of ωF will be justified later. On the other hand, if F is contained in ∂Ω
and belongs to the element R, we set

ωF = (pk(R) + 1)2

Hk(R) . (2.19)

Finally, the constant γ > 0 is chosen in order to guarantee the coercivity of the bilinear form aδ with
respect to the DG-norm, defined in Vδ by

‖v‖2DG,δ =
∑
R∈R
‖∇v‖20,R + γ

∑
F∈Fd−1

ωF ‖ [v] ‖20,F . (2.20)

Indeed, the following proposition, which is a specialization of a well-known general result about DG
methods to the present situation (see, e.g., [11]), confirms the uniform continuity and coercivity of
the form a∗δ , which implies well-posedness of the discretization scheme (2.16).
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Proposition 2.2. There exists a constant γ0 > 0 such that for all γ > γ0 the bilinear form a∗δ
defined in (2.17) satisfies

a∗δ(v, v) ' ‖v‖2DG,δ ∀v ∈ Vδ . (2.21)

The constant γ0 and the constants implied by the symbol ' can be chosen independent of δ.

Proof. We just highlight the crucial step in the proof, which is the bound of each quantity

|({∇v}, [v])0,F | ≤ ‖{∇v}‖0,F ‖ [v] ‖0,F ≤
η

2ωF
‖{∇v}‖20,F + ωF

2η ‖ [v] ‖20,F ,

where η > 0 is a suitable weight allowing us to control these terms by the two terms appearing in
the DG-norm. Assume first that F is an interior face, orthogonal to the k-th direction and shared
by the two elements R− and R+. Then, denoting by ∂k the partial derivative with respect to the
k-th coordinate, we obtain

‖{∇v}‖20,F = 1
4‖(∂kv

−)|F + (∂kv+)|F ‖20,F ≤
∑
±
‖(∂kv±)|F ‖20,F ≤ ωF

∑
±
‖∂kv±‖20,R± ,

where we have used the trace inequality (2.12). A similar estimate holds when F is a boundary face.
The rest of the proof is standard.

2.3 Numerical integration
Computational efficiency is usually enhanced, within a nodal-basis approach such as the one adopted
here, by inserting high-order numerical integration (NI) into the Galerkin scheme at hand. This
is accomplished by replacing the exact L2 inner products on any element R and any face F by
suitable discrete inner products based on Legendre-Gauß-Lobatto quadrature formulas. While on
each element R it is enough to use the inner product defined in (2.10), some care is needed on a face
F , where restrictions of polynomials of different degrees may come into play. Let us detail the latter
situation.
Assume that F ∈ Fd−1 is shared by two contiguous elements R±, and is orthogonal to the k-th

direction. Let p±∗ be the vectors of (d−1) polynomial degrees, obtained from p± = p(R±) by deleting
the k-th entries. If v ∈ Vδ, and if v± denotes its restriction to R±, then (v±)|F belongs to Qp±∗ (F ).
Let us introduce the vector p∗ = max(p−∗ , p+

∗ ), where the maximum is taken component-wise. Then
both (v−)|F and (v+)|F belong to Qp∗(F ). Thus, it makes sense to consider the (d− 1)-dimensional
LGL-grid Gp∗(F ) on F corresponding to the polynomial-degree vector p∗, as well as the corresponding
quadrature nodes. The induced inner product in Qp∗(F ) will be denoted by

(u, v)0,F,p∗ =
∑

ζ∈Gp∗ (F )

u(ζ) v(ζ)wζ . (2.22)

With these notation at hand, we assume that f ∈ C0(Ω) and we obtain the modified DG-NI (Dis-
continuous Galerkin with Numerical Integration) scheme: find u ∈ Vδ such that

a∗δ,NI(u, v) = (f, v)Ω,NI ∀v ∈ Vδ , (2.23)

where

a∗δ,NI(u, v)=
∑
R∈R

(∇u,∇v)0,R,p

+
∑

F∈Fd−1

(
− ({∇u}, [v])0,F,p∗ − ({∇v}, [u])0,F,p∗ + γωF ([u], [v])0,F,p∗

)
,

(2.24)
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and
(f, v)Ω,NI =

∑
R∈R

(f, v)0,R,p . (2.25)

Note that at the algebraic level, the computation of the interface terms may require suitable transfer
operators between LGL-grids.
Proposition 2.2 admits a completely analogous statement for the form a∗δ,NI , which can be estab-

lished through repeated applications of the norm equivalence (2.11) in each R and F .

2.4 The SE-DG reduced bilinear form
In view of Proposition 2.2 and its NI-counterpart, both forms a∗δ and a∗δ,NI are uniformly equivalent
to one of the reduced bilinear forms

aδ(u, v) =
∑
R∈R

(∇u,∇v)0,R + γ
∑

F∈Fd−1

ωF ([u], [v])0,F , (2.26)

or
aδ,NI(u, v) =

∑
R∈R

(∇u,∇v)0,R,p + γ
∑

F∈Fd−1

ωF ([u], [v])0,F,p∗ . (2.27)

Therefore, we will continue our discussion by investigating efficient preconditioners for these forms.
In particular, theoretical considerations will be developed for the conceptually simpler form (2.26),
although numerical results will be obtained using the complete, yet computationally more efficient
form (2.24).

3 The auxiliary space method
A suitable conceptual framework for developing preconditioners for the linear system (2.16) is offered
by the so called auxiliary space method (see, e.g., [7, 27, 28, 12]). For convenience of the reader we
briefly recall now the general setting adopting the abstract framework, see [22, 20, 21].
Let V be a finite-dimensional space contained in some functional space X, and let a : V ×V → R

be a given symmetric positive-definite bilinear form. Let us introduce an auxiliary space Ṽ , still
contained in X and finite-dimensional, which carries a symmetric positive-definite bilinear form
ã : Ṽ × Ṽ → R. Let us assume that two symmetric positive-definite bilinear forms are defined on
the sum V̂ = V + Ṽ , say â, b : V̂ × V̂ → R, which satisfy the following conditions:

i) â is a spectrally equivalent extension of both a and ã, i.e.,

a(v, v) ' â(v, v) ∀v ∈ V , (3.1)
ã(ṽ, ṽ) ' â(ṽ, ṽ) ∀ṽ ∈ Ṽ . (3.2)

ii) b dominates a on V , i.e.,
a(v, v) . b(v, v) ∀v ∈ V ; (3.3)

iii) there exist linear operators Q : Ṽ → V and Q̃ : V → Ṽ such that

ã(Q̃v, Q̃v) . a(v, v) ∀v ∈ V , (3.4)
a(Qṽ,Qṽ) . ã(ṽ, ṽ) ∀ṽ ∈ Ṽ , (3.5)

and

b(v − Q̃v, v − Q̃v) . â(v, v) ∀v ∈ V , (3.6)
b(ṽ −Qṽ, ṽ −Qṽ) . â(ṽ, ṽ) ∀ṽ ∈ Ṽ . (3.7)
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Remark 3.1. If condition ii) above is replaced with the stronger condition:

ii’) b dominates â on V̂ , i.e.,
â(v̂, v̂) . b(v̂, v̂) ∀v̂ ∈ V̂ , (3.8)

then one can skip checking inequalities (3.4) and (3.5) in iii).

Proposition 3.2. Under the assumptions (3.1)–(3.7), the following norm equivalence in V holds:

ĉ a(v, v) ≤ inf
w ∈ V, ṽ ∈ Ṽ
v = w +Qṽ

{b(w,w) + ã(ṽ, ṽ)} ≤ Ĉ a(v, v) ∀v ∈ V , (3.9)

where the constants ĉ and Ĉ only depend on the constants implied by the assumptions (see [9] for
their expression).

Remark 3.3. It is worth mentioning the special case when Ṽ can be chosen as a proper subspace
of V . Then V̂ = V and natural choices for ã and â are the form a itself, whereas an obvious choice
for Q is the canonical injection. In such a situation, the only assumptions that need be checked for
Proposition 3.2 to hold are:

a(v, v) . b(v, v) ∀v ∈ V (3.10)

and the existence of a linear operator Q̃ : V → Ṽ such that

b(v − Q̃v, v − Q̃v) . a(v, v) ∀v ∈ V . (3.11)

At the algebraic level, Proposition 3.2 has the following main consequence. Let A, Ã and B
denote the Gramian matrices for the bilinear forms a, ã and b (restricted to V × V ) with respect
to suitable bases of the spaces V and Ṽ . Let S be the matrix representing the action of Q in these
bases.

Corollary 3.4. Under the assumptions (3.1)–(3.7), let CB and CÃ be symmetric preconditioners
for B and Ã, respectively, satisfying the following spectral bounds:

λmax(CBB), λmax(CÃÃ) ≤ Λmax, λmin(CBB), λmin(CÃÃ) ≥ Λmin .

Then, CA = CB + SCÃST is a symmetric preconditioner for A, and the spectral condition number
of CAA satisfies

κ(CAA) ≤ Λmax

Λmin

Ĉ

ĉ
.

4 Orientation
We shall employ the auxiliary space method for preconditioning the linear system arising from the
SE-DG - Spectral-Element Discontinuous-Galerkin discretization introduced in Sect. 2.
Perhaps a few comments on the possible choices of auxiliary spaces are in order. It has been seen

in [11, 12] that for bounded polynomial degrees a low order conforming finite element subspace works
well. Rougly speaking, it then sufficies to apply simple relaxation to the “nonconforming” part of
the DG finite elements space and to employ multilevel preconditioning techniques to the conforming
low order subspace. Since constants arising in this analysis depend on the polynomial degree in
the DG-space this strategy cannot be expected to work in its original form in the present context.
Instead one learns from experiences in the spectral element method (see e.g. [6, 15, 14, 23]) that
suitable auxiliary spaces should be based on low order finite elements on LGL-grids, introduced in
Sect. 2.1.
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However, then several serious difficulties arise. The first one is rather obvious, namely how to
precondition in the case of very large degrees corresponding low order finite element discretizations
since the particular associated grids are not nested and typical multilevel techniques cannot be
applied directly? Moreover, multilevel techniques work well, as mentioned above, when dealing with
(globally) conforming discretizations. This latter issue is more subtle but turns out to pose serious
obstructions as soon as one uses different polynomial degrees on different patches. Specifically, LGL-
grids on adjacent patches with different polynomial degrees do not match and globally conforming
subspaces are too thin for preconditioning. Therefore, it seems that an additional “second stage”
auxiliary subspace is needed. For this purpose we shall construct suitable low order conforming
finite element subspaces on certain dyadically refined (but anisotropic) grids associated with the
LGL-grids, see Sect. 6, giving rise to the DFE-CG - Dyadic-Finite-Element Continuous-Galerkin
schemes. These grids can be nested and thus used to form sufficiently “rich” globally conforming
subspaces to which multilevel preconditioners apply.
Now the question arises “why not using the latter spaces directly as auxiliary spaces for the SE-

DG discretizations?” Again, a second look at this option reveals that the jump terms in the DG
bilinear form cause serious problems when trying to fulfill the above requirements in the auxiliary
space framework. In fact, although the degrees of two adjacent polynomial patches may differ the
jump across the interface could vanish since one of the traces may happen to degenerate to the
common lower degree. However, since the corresponding LGL-grids do not match the respective
associated dyadic grids differ as well and will therefore give rise in general to nontrivial jumps of
the corresponding piecewise linears. This incompatibility of the jump terms seems to hinder the
verification of the ASM conditions.
Therefore, it seems that one has to resort to an iterated application of the auxiliary space method.

The preceeding remarks concerning the compatibility of jump terms in different discretizations sug-
gest to reduce the problem as quickly as possible to a conforming one for which one can employ
standard energy inner products. Therefore, as a first-stage auxiliary space we choose the largest
conforming subspace of Vδ, referred to as SE-CG - Spectral-Element Continuous-Galerkin space.
This is already interesting in its own right since it can be combined with (nearly optimal) domain
decomposition preconditioners, see [16].
Since local FE spaces on contiguous elements with LGL-grids can be glued together to produce

non-trivial globally conforming spaces only when the polynomial degrees are all equal, we shall use
this concept only implicitly and propose to pass from SE-CG directly to DFE-CG. Once we have
arrived at that stage, one can proceed to preconditioning this latter problem by suitable multilevel
techniques. Due to the anisotropies of the involved dyadic grids this is, however, not quite straight
forward. We develop therefore a multi-wavelet based preconditioner whose detailed elaboration is,
however, deferred to the forthcoming part II of this work.
In conclusion, we propose the following route to an iterated auxiliary space preconditioner:

• IAS-PATH: SE-DG → SE-CG → DFE-CG .

The first stage will be discussed in Sect. 5, whereas the second one will be detailed in Sect. 7.
We proceed collecting the necessary technical prerequisites for the LGL-grids in Sect. 5.1 and for

the associated dyadic grids in Sect. 6.

5 Stage SE-DG → SE-CG
In this section, we investigate the use of conforming spectral elements as auxiliary spaces. Before
defining the constitutive ingredients and checking the ASM assumptions, we introduce some addi-
tional notation and we add a few remarks, which will be helpful here and throughout the remainder
of the paper.
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5.1 Auxiliary material
Given two integers 0 ≤ l,m ≤ d and a facet F ∈ Fl, we set

Fm(F ) = {G ∈ Fm : G ⊂ F if m < l , G = F if m = l , G ⊃ F if m > l} . (5.1)

In particular, Fl(R) has been already defined as the set of all l-facets of an element R ∈ R, whereas
R(F ) = Fd(F ) is the set of all elements R containing the facet F .
Given any R ∈ R and the corresponding LGL-grid Gp(R), if F ∈ Fl(R) for some 1 ≤ l ≤ d − 1,

then Gp(R) ∩ F is the LGL-grid of the induced quadrature formula on F , which will be denoted
by Gp(F,R). The order of the formula, denoted by p∗ = p(F,R) ∈ Nl, is obtained from the vector
p = p(R) by deleting the d− l components corresponding to the frozen coordinates of F . The weights
of the formula, denoted by wF,Rξ , are connected to the weights wξ of the original formula on R by
the relation

wξ = wf1 · · ·wfd−l
wF,Rξ ∀ξ ∈ Gp(F,R) , (5.2)

where each wfi is a boundary weight of the univariate LGL formula along one of the frozen coordi-
nates of F . This implies that if the facet F ′ belongs to Fl−1(F ) ⊂ Fl−1(R), then

wF
′,R

ξ = wfw
F,R
ξ ∀ξ ∈ Gp(F ′, R) , (5.3)

for some boundary weight wf .
Next, let us draw some consequences from the assumptions (2.14) of quasi-uniformity of the mesh

and polynomial degree grading. Under these assumptions, it is easily seen that given any R ∈ R,
there exists a real H = HR > 0 and an integer p = pR > 0, such that for all R′ ∈ R satisfying
R′ ∩R 6= ∅, it holds

Hk(R′) ' HR , pk(R′) ' pR , 1 ≤ k ≤ d , (5.4)

i.e., lengths and degrees are locally comparable. More generally, for any face F ∈ Fl, l < d, one
can define analogous “representative parameters” HF , pF , for instance, by averaging corresponding
parameters from intersecting faces. This implies, on the one hand, that each boundary weight wj ,
j ∈ {0, pk(R′)} of any univariate LGL formula used in the definition of the tensorial LGL formula
on R′ satisfies

wj '
H
p2 , (5.5)

and, on the other hand, that each face F ∈ Fd−1(R′) carries a DG weight ωF satisfying

ωF '
p2

H . (5.6)

In particular, all the faces F ∈ Fd−1 having a nonempty intersection with an element R carry weights
ωF of comparable size.

5.2 Definition of the ASM ingredients
Referring to the notation of Sect. 3, let us choose as V the space Vδ introduced in (2.15), whereas
as Ṽ we choose the space Ṽδ = Vδ ∩ H1

0 (Ω). Since Ṽ ⊂ V , Remark 3.3 applies, and we are only
required to define two bilinear forms a, b : V × V → R and a linear operator Q̃ : V → Ṽ for which
conditions (3.10) and (3.11) are fulfilled.
The bilinear form a will be the reduced form aδ defined in (2.26). Note that on Ṽδ it reduces to

the standard inner product in H1
0 (Ω), since

aδ(u, v) =
∑
R∈R

(∇u,∇v)0,R = (∇u,∇v)0,Ω ∀u, v ∈ Ṽδ .
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The definition of the form b is inspired by the inverse inequality (2.6) and requires the following
notation. Let R ∈ R be any element, and ξ ∈ Gp(R) be any LGL quadrature node in R, with
associated weight wξ = wj1wj2 · · ·wjd

; we denote by wξ,k the factor wjk
coming from the k-th

direction. Then, we introduce the weights

Wξ =
(

d∑
k=1

w−2
ξ,k

)
wξ =

d∑
k=1

w−1
ξ,k

(∏
j 6=k

wξ,j

)
. (5.7)

We also introduce strictly positive coefficients cξ, satisfying the requirement cξ ' 1 (precisely, they
should be bounded from above and from below independently of ξ, p and H under the assumptions
(2.14)). They will be chosen with the aim of enhancing the effects of the ASM preconditioner; we
refer to Sect. 8 for the details.

Definition 5.1. The bilinear form bδ : Vδ × Vδ → R is defined as follows:

bδ(u, v) =
∑
R∈R

bR(u, v) , with bR(u, v) :=
∑

ξ∈Gp(R)

u(ξ) v(ξ) cξWξ .

Note that the bilinear form bδ is defined strictly elementwise, i.e. it does not involve any coupling
between different elements R, which is essential for the efficient applicability of the preconditioner
B in Corollary 3.4.
Before giving the definition of the operator Q̃δ : Vδ → Ṽδ, we introduce a new assumption on the

local distribution of the polynomial degrees, which indeed poses a restriction only for d ≥ 3.

Assumption 5.2. For 2 ≤ l ≤ d− 1 and for each F ∈ Fl, there exists R ∈ R(F ) such that

p(F,R) ≤ p(F,R′) ∀R′ ∈ R(F )

(the inequality being taken componentwise).

Note that the property is trivially true for l = 1 since p(F,R) ∈ N, and for l = d sinceR(F ) = {F}.
Thus, for each F ∈ Fl with 1 ≤ l ≤ d, we are entitled to select, once and for all, an element R](F )
such that

R](F ) := argminR′∈R(F )p(F,R′), p](F ) := p(F,R](F )). (5.8)

The LGL-grid Gp(F,R](F )) will be denoted by Gp](F ). Finally, for each vertex x ∈ F0 of the
decomposition we select an element R](x).
The definition of the operator Q̃δ will be accomplished through a recursive procedure, as follows.

Definition 5.3. For 0 ≤ l ≤ d, set
Fl =

⋃
F∈Fl

F .

Given any v ∈ Vδ, let us define the sequence of piecewise polynomial functions q̃l : Fl → R by the
following recursion:

i) For any x ∈ F0, set q̃0(x) = 0 if x ∈ ∂Ω and q̃0(x) = vR](x)(x) if x ∈ Ω.

ii) For l = 1, . . . , d, define q̃l on Fl as follows: for any F ∈ Fl, set q̃l|F = 0 if F ⊂ ∂Ω, otherwise
define q̃l|F by the conditions

q̃l|F ∈ Qp](F ) such that
q̃l|F (ξ) = vR](F )(ξ) ∀ξ ∈ Gp](F ) \ ∂lF ,

q̃l|F (ξ) = q̃l−1(ξ) ∀ξ ∈ Gp](F ) ∩ ∂lF ,

(5.9)

where ∂lF denotes the boundary of F as an l-dimensional manifold.
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Finally, we set
Q̃δv = q̃d . (5.10)

Remark 5.4. The above recursion defines a linear operator Q̃δ from Vδ into Ṽδ.

In fact, the linearity of Q̃δ is obvious. Moreover, note that Q̃δv ∈ Vδ since p](R) = p(R) for all
R ∈ R. Furthermore, one has the property

q̃l|Fl−1 = ql−1 1 ≤ l ≤ d . (5.11)

Indeed, if F ∈ Fl and F ′ ∈ Fl−1(F ), then q̃l|F ′ ∈ Qp(F ′,R](F ))(F ′) whereas q̃l−1|F ′ ∈ Qp(F ′,R](F ′))(F ′).
The minimality property (5.8) applied to F ′, together with the last set of conditions in (5.9), imply
that q̃l|F ′ = q̃l−1|F ′ , whence (5.11) follows. This property implies that Q̃δv is continuous throughout
Ω, and vanishes on ∂Ω. We conclude that Q̃δv belongs to Ṽδ.

5.3 Check of the ASM assumptions
We shall now first verify (3.10) in Remark 3.3. To this end, the following immediate consequences
of (5.5) and (5.6) concerning the weights Wξ introduced in (5.7) will be useful.

Lemma 5.5. Let R ∈ R be arbitrary. For any face F ∈ Fd−1 and any ξ ∈ Gp(F,R), one has

Wξ ' ωFwF,Rξ .

Proposition 5.6. For bδ given in Definition 5.1 one has

aδ(v, v) . bδ(v, v) ∀v ∈ Vδ .

Proof. For any R ∈ R, using (2.3), (2.4) and (2.6) together with tensorization, one obtains

‖∇v‖20,R =
d∑
k=1
‖∂kv‖20,R .

d∑
k=1

∑
ξ∈Gp(R)

v(ξ)2 w−1
ξ,k

(∏
j 6=k

wξ,j

)
=

∑
ξ∈Gp(R)

v(ξ)2Wξ ,

whence ∑
R∈R
‖∇v‖20,R . bδ(v, v) .

On the other hand, let F ∈ Fd−1 be a face shared by two elements, say R±. Then, recalling the
definition of p±∗ given in Sect. 2.3, we have

‖ [v] ‖20,F .
∑
±
‖v±‖20,F .

∑
±
‖v±‖20,F,p±∗ =

∑
±

∑
ξ∈Gp(F,R±)

(v±(ξ))2wF,R
±

ξ .

Multiplying by ωF and using Lemma 5.5 for both R = R±, we obtain

ωF ‖ [v] ‖20,F .
∑
±

∑
ξ∈Gp(F,R±)

(v±(ξ))2W±ξ ≤
∑
±

∑
ξ∈Gp(R±)

(v±(ξ))2W±ξ .

A similar result holds for the faces F ∈ Fd−1 sitting on the boundary of Ω. Hence,∑
F∈F

ωF ‖ [v] ‖20,F . bδ(v, v) ,

and the result is proven.
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We now focus on verifying assumption (3.11). This will be accomplished through a sequence of
intermediate results.

Lemma 5.7. For any v ∈ Vδ, let its restriction to R ∈ R be denoted by vR. The following bound
holds

bδ(v − Q̃δv, v − Q̃δv) .
∑

F∈Fd−1

ωF
∑

R∈R(F )

‖vR − q̃d−1‖20,F , v ∈ Vδ,

where q̃d−1 is constructed in Definition 5.3 in order to define Q̃δv.

Proof. By definition of bδ, one has

bδ(v − Q̃δv, v − Q̃δv) =
∑
R∈R

∑
ξ∈Gp(R)

|(vR − Q̃δv)(ξ)|2 cξWξ .

In view of (5.10), (Q̃δv)|R = q̃d|R and q̃d coincides with vR on Gp(R)\∂R and with q̃d−1 on Gp(R)∩∂R.
Thus, since cξ ' 1

bδ(v − Q̃δv, v − Q̃δv) '
∑
R∈R

∑
ξ∈Gp(R)∩∂R

|(vR − q̃d−1)(ξ)|2Wξ

≤
∑
R∈R

∑
F∈Fd−1(R)

∑
ξ∈Gp(F,R)

|(vR − q̃d−1)(ξ)|2Wξ

.
∑

F∈Fd−1

ωF
∑

R∈R(F )

∑
ξ∈Gp(F,R)

|(vR − q̃d−1)(ξ)|2 wF,Rξ ,

where we have used Lemma 5.5 in the last inequality. Finally, we observe that vR|F ∈ Qp(F,R)(F ),
whereas q̃d−1|F ∈ Qp](F )(F ) ⊆ Qp(F,R)(F ). Thus, (2.11) yields∑

ξ∈Gp(F,R)

|(vR − q̃d−1)(ξ)|2 wF,Rξ ' ‖vR − q̃d−1‖20,F

proving the assertion.

Lemma 5.8. Let v ∈ Vδ be arbitrary, and let q̃l, 0 ≤ l ≤ d, be the sequence built in Definition 5.3
in order to define Q̃δv. For 1 ≤ l ≤ d− 1, given any F ∈ Fl and any R ∈ R(F ), the following bound
holds

‖vR − q̃l‖20,F .
∑

G∈Fd−1(F )

‖ [v]G ‖20,F + H
p2

∑
F ′∈Fl−1(F )

‖vR](F ) − q̃l−1‖20,F ′ , (5.12)

where [v]G denotes the jump of v across the internal face G, or v|G when G ⊂ ∂Ω. Here, H = HF
and p = pF are representative values of the local meshsizes and polynomial degrees, introduced in
(5.4). On the other hand, for any vertex x ∈ F0 and any R ∈ R(x), one has

|(vR − q̃0)(x)|2 .
∑

G∈Fd−1(x)

| [v]G(x) |2 . (5.13)

Proof. Assume first l > 0. If F ⊂ ∂R ∩ ∂Ω, then

‖vR − q̃l‖20,F = ‖vR‖20,F .
∑

G∈Fd−1(F )

‖ [v]G ‖20,F ,

which is a particular instance of (5.12). Let us then assume F 6⊂ ∂Ω and, for simplicity, let us set
R] = R](F ). Observe that the definition of q̃l|F on Gp](F ) ∩ ∂lF given in (5.9) can be rephrased as
q̃l|F (ξ) = vR](ξ) +

(
q̃l−1(ξ)− vR](ξ)

)
, or equivalently,

q̃l|F = vR]|F +
∑

ξ∈G
p] (F )∩∂lF

(
q̃l−1(ξ)− vR](ξ)

)
ψFξ ,
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where ψFξ ∈ Qp](F ) denotes the Lagrangean function associated with the node ξ of the LGL-grid on
F of order p]. Thus, using once more (2.11), we obtain

‖vR − q̃l‖20,F . ‖vR − vR]‖20,F +
∑

ξ∈G
p] (F )∩∂lF

|q̃l−1(ξ)− vR](ξ)|2wF,R
]

ξ =: A2 +B2 .

As for the first quantity, there exists a sequence Ri ∈ R(F ), i = 0, . . . ,m ≤ d− l such that R0 = R,
Rm = R] and Ri−1 ∩Ri ∈ Fd−1(F ) for i = 1, . . . ,m. Thus,

A2 .
m∑
i=1
‖vRi − vRi−1‖20,F ≤

∑
G∈Fd−1(F )

‖ [v]G ‖20,F .

On the other hand, using (5.3) and (5.5), we have

B2 ≤
∑

F ′∈Fl−1(F )

∑
ξ∈Gp(F ′,R])

|q̃l−1(ξ)− vR](ξ)|2wF,R
]

ξ

.
H
p2

∑
F ′∈Fl−1(F )

∑
ξ∈Gp(F ′,R])

|q̃l−1(ξ)− vR](ξ)|2wF
′,R]

ξ ' H
p2

∑
F ′∈Fl−1(F )

‖vR] − q̃l−1‖20,F ′ ,

where the last equivalence follows, as in the proof of the previous lemma, by observing that vR]|F ′ ∈
Qp(F ′,R])(F ′) whereas q̃l−1|F ′ ∈ Qp](F ′)(F ′) ⊆ Qp(F ′,R])(F ′). Thus, (5.12) is proven. Finally, (5.13)
is trivial.

Lemma 5.9. Let F ∈ Fl for some 0 ≤ l ≤ d − 2, and let G ∈ Fd−1(F ). Define p∗ = max
R∈R(G)

p(R)

(componentwise). Then, (
H
p2

)d−l−1
‖v‖20,F . ‖v‖20,G ∀v ∈ Qp∗(G) .

Proof. Using several times (5.3) and (5.5), as well as (2.11), we have

‖v‖20,G '
∑

ξ∈Gp∗ (G)

|v(ξ)|2wGξ ≥
∑

ξ∈Gp∗ (G)∩F

|v(ξ)|2wGξ

'
(

H
p2

)d−l−1 ∑
ξ∈Gp∗ (F )

|v(ξ)|2wFξ '
(

H
p2

)d−l−1
‖v‖20,F .

We are now ready to prove condition (3.11).

Proposition 5.10. For bδ given in Definition 5.1 and for Q̃δ given in Definition 5.3, one has

bδ(v − Q̃δv, v − Q̃δv) . aδ(v, v) ∀v ∈ Vδ .

Proof. First, we observe that the cardinality of any set Fm(F ) defined in (5.1) is bounded by a
quantity depending only on the dimension d. We start from the bound given by Lemma 5.7, and
focus on any face F ∈ Fd−1. Using inequality (5.12) of Lemma 5.8 with l = d− 1, we get∑

R∈R(F )

‖vR − q̃d−1‖20,F . ‖ [v] ‖20,F + H
p2

∑
F ′∈Fd−2(F )

‖vR](F ) − q̃d−2‖20,F ′ .
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A further application of Lemma 5.8 to each summand on the right hand side of the above inequality,
now with l = d− 2, yields∑

R∈R(F )

‖vR − q̃d−1‖20,F . ‖ [v] ‖20,F + H
p2

∑
F ′∈Fd−2(F )

∑
G∈Fd−1(F )

‖ [v]G ‖20,F ′

+
(

H
p2

)2 ∑
F ′∈Fd−2(F )

∑
F ′′∈Fd−3(F ′)

‖vR](F ′) − q̃d−3‖20,F ′′ .

Lemma 5.9 with l = d − 2 yields H
p2 ‖ [v]G ‖20,F ′ . ‖ [v] ‖20,G. At this point, let us introduce the set

F ∩d−1(F ) = {G ∈ Fd−1 : G ∩ F 6= ∅} of all faces intersecting the face F , and let us observe that

H
p2

∑
F ′∈Fd−2(F )

∑
G∈Fd−1(F )

‖ [v]G ‖20,F ′ .
∑

G∈F ∩
d−1(F )

‖ [v] ‖20,G .

On the other hand, we have∑
F ′∈Fd−2(F )

∑
F ′′∈Fd−3(F ′)

‖vR](F ′) − q̃d−3‖20,F ′′ .
∑

F ′′∈Fd−3(F )

∑
R∈R(F ′′)

‖vR − q̃d−3‖20,F ′′ .

Thus,

∑
R∈R(F )

‖vR − q̃d−1‖20,F .
∑

G∈F ∩
d−1(F )

‖ [v] ‖20,G +
(

H
p2

)2 ∑
F ′′∈Fd−3(F )

∑
R∈R(F ′′)

‖vR − q̃d−3‖20,F ′′ .

We now proceed recursively, using Lemmas 5.8 and 5.9 with l = d− 3, d− 4, . . . . At the j-th stage
of recursion, we obtain

∑
R∈R(F )

‖vR − q̃d−1‖20,F .
∑

G∈F ∩
d−1(F )

‖ [v] ‖20,G +
(

H
p2

)j−1 ∑
F ′∈Fd−j(F )

∑
R∈R(F ′)

‖vR − q̃d−j‖20,F ′ .

When j = d, we use (5.13) and (5.5) to finally get∑
R∈R(F )

‖vR − q̃d−1‖20,F .
∑

G∈F ∩
d−1(F )

‖ [v] ‖20,G .

At last, we observe that ωG ' ωF for all G ∈ F ∩d−1(F ) by (5.6), so that, going back to Lemma 5.7,
we conclude that

bδ(v − Q̃δv, v − Q̃δv) .
∑

G∈Fd−1

ωG‖ [v] ‖20,G ≤ aδ(v, v) .

5.4 Summary of Stage I
Thus, all requirements of the Auxiliary Space Method are satisfied for the quantities defined in
Sect. 5.2. Note that the Gramian B of the form bδ is diagonal so that CB = B−1 is efficiently
applicable and trivially satisfies the respective requirements in Corollary 3.4. The quantitative per-
formance of this preconditioning stage will be discussed in Sect. 8. So it remains to construct a
suitable preconditioner CÃ for the “auxiliary space problem” involving the bilinear form ã. Several
possible routes to proceed from here suggest themselves. The first one is employ a domain decompo-
sition strategy in the spirit of [25]. This is carried out in [16] where a dual-primal preconditioner for
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the auxiliary problem is formulated and analyzed. Specifically, the resulting condition numbers are
shown to exhibit only a mild square logarithmic growth with respect to polynomial degrees similar
to those obtained in [25] for constant degrees.
Here we pursue a different route trying to develop a preconditioner CÃ that eventually gives rise

to uniformly bounded condition numbers for the auxiliary problem and hence also for the original
problem. Recall that the main obstruction to employing the low order LGL-grid finite elements as
a next-stage auxiliary space for the conforming high order space is the non-matching of the LGL
grids of different degrees at element interfaces which, in turn, is closely related to the fact that the
LGL-grids are not nested. A key element of our approach is to construct certain low order auxiliary
spaces that are in some sense “stable companions” of the low order LGL finite elements but that are
nested. However, having overcome the principal hurdle of non-nestedness certain further difficulties
arise that will be addressed throughout the remainder of this paper.

6 Piecewise polynomial spaces over LGL and dyadic meshes
This section contains preparatory material for the realization of the subsequent stage SE-CG →
DFE-CG, see Sect. 4. After recalling some further properties of the LGL-grids introduced in
Sect. 2, we turn to the following crucial task. We develop an algorithm to associate to any LGL-
grid a dyadic grid in such a way that nestedness is guaranteed as the polynomial degree increases.
Several approximation operators related to these grids are defined, and certain stability properties are
established. Finally, the previous univariate results are extended by tensorization to the multivariate
setting which eventually allow us to use these dyadic grids in place of LGL-grids for the construction
of low order auxiliary spaces.
Let us introduce a few notations which will be used throughout the section. Given a bounded

interval I = [a, b] ⊂ R, consider an ordered grid G = {ξj : 0 ≤ j ≤ p} ⊂ I, with

a = ξ0 < · · · < ξj−1 < ξj < · · · < ξp = b .

The collection of intervals Ij = [ξj−1, ξj ], 1 ≤ j ≤ p, defines a finite partition (or mesh) of I, which
will be indicated by T = T (G). Conversely, any finite partition T of I comes from a unique ordered
grid G = G(T ); for this reason, the two concepts will be often used equivalently in the sequel. We
denote by hj = ξj − ξj−1 = |Ij | the length of the interval Ij ∈ T . Furthermore, we associate to the
partition T the space of continuous, piecewise-linear functions

Vh(T ) = {v ∈ C0(I) : v|Ij
∈ P1 , ∀Ij ∈ T } . (6.1)

The following definitions will be crucial in the sequel.

Definition 6.1. An ordered grid G = {ξj : 0 ≤ j ≤ p} in I is locally Cg-quasiuniform if there exists
a constant Cg > 1 such that

C−1
g ≤ |Ij+1|

|Ij |
≤ Cg , 1 ≤ j ≤ p− 1 . (6.2)

Definition 6.2. An ordered grid G in I is locally (A,B)-uniformly equivalent to another ordered
grid G̃ if there exist constants 0 < A < B such that

∀Ij ∈ T (G), ∀Ĩl ∈ T (G̃) , Ij ∩ Ĩl 6= ∅ =⇒ A ≤ |Ij |
|Ĩl|
≤ B . (6.3)

Examples are given by the LGL-grids and the associated dyadic grids, as discussed below.
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6.1 LGL-grids and finite elements
Given any integer p > 0, let Gp(I) be the LGL-grid of order p in I and let Tp(I) = T (Gp(I)) be
the corresponding partition. We recall that the points in Gp(I) are symmetrically placed around the
center of the interval, and the intervals in Tp(I) are monotone in the sense that

Ij , Ij+1 ∈ Tp(I), Ij , Ij+1 ⊂ [a, (a+ b)/2] ⇒ |Ij | < |Ij+1| , (6.4)

with the analogous reverse relation for the right half [(a + b)/2, b] of I. Furthermore, the variation
of the interval lengths is uniformly smooth, in the sense that Gp(I) is locally Cg-quasiuniform for a
constant Cg > 1 independent of p. These results can be found, e.g., in [8].
Another relevant property concerns the locally uniform equivalence of LGL-grids of comparable

order; we refer to [8] for the proof.

Property 6.3. Assume that c p ≤ q ≤ p for some fixed constant c > 0. Then, Gq(I) and Gp(I)
are locally (A,B)-uniformly equivalent, with A and B depending on the proportionality factor c but
independent of q and p.

A crucial role in what follows will be played by the relation between the high-order polynomial
space Vp(I) := Pp(I) and its low-order companion finite element space Vh,p(I) = Vh(Tp(I)) of the
continuous, piecewise-linear functions on the partition Tp(I). Let us introduce the interpolation
operators at the nodes of Gp(I)

Ip : C0(I)→ Pp(I) , Ih,p : C0(I)→ Vh,p(I) ,
(Ipv)(ξj) = v(ξj) , (Ih,pv)(ξj) = v(ξj) , 0 ≤ j ≤ p , ∀v ∈ C0(I) .

(6.5)

Then, v 7→ vh = Ih,pv defines an isomorphism between Pp(I) and Vh,p(I), with inverse vh 7→ v =
Ipvh. The next property provides uniform equivalences between norms of global polynomials and
their piecewise affine interpolants at the LGL-grid, and vice-versa, which are at the core of the
subsequent applications to preconditioning (see [13, 23]).

Property 6.4. One has
‖v‖0,I ' ‖vh‖0,I ∀v ∈ Pp(I) , (6.6)

and
‖v′‖0,I ' ‖v′h‖0,I ∀v ∈ Pp(I) , (6.7)

where the involved constants are independent of p and H = b− a.

Note that taking as v in (6.6) each Lagrange basis function at the LGL nodes and using (2.2)
and (6.2), it is easily seen that the size of each interval Ij is comparable to that of the LGL weight
associated with any of its endpoints, in the sense that the following bounds hold, uniformly in p and
H:

1 . min
1≤j≤p

hj
wj
≤ max

1≤j≤p

hj
wj

. 1 . (6.8)

As a consequence, (6.7) together with (6.8) and (2.2) provide a simple proof of the inverse inequality
(2.6). Indeed, one has

‖v′h‖0,I =
p∑
j=1

(
v(ξj)− v(ξj−1)

hj

)2
hj ≤

2
h0
v2(ξ0) +

p−1∑
j=1

(
2
hj

+ 2
hj+1

)
v2(ξj) + 2

hp
v2(ξp) .
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6.2 Dyadic meshes
The subsequent stage SE-CG → DFE-CG will rely upon the use of auxiliary spaces based on
dyadic grids that are in a certain sense associated with LGL-grids, but have the additional advantage
of giving rise to nested conforming spaces. Their construction, based on recursion algorithms, is
detailed in [8] (see also [9] for an extensive quantitative investigation of their properties). Hereafter,
we summarize the main results that are needed in the subsequent analysis, referring to [8] and [9]
for their proofs.
We wish to construct for a given ordered grid G in I an “equivalent” (in the sense of the definition

above) dyadic mesh D. To this end, it will be convenient to introduce for any interval D

I(D,G) := argmax {|Ij | : Ij ∈ T (G), D ∩ Ij 6= ∅} . (6.9)

Given a real α > 0 and an initial dyadic partition D0, a dyadic partition D can be constructed
recursively as follows:

Dyadic [G,D0, α]→ D:

(i) Set D := D0.

(ii) While there exists D ∈ D such that

|D| > α|I(D,G)| (6.10)

split D by halving it and replace it by its two children D′, D′′, D = D′ ∪D′′, i.e.

(D \ {D}) ∪ {D′, D′′} → D.

Such a dyadic mesh generator, applied to the sequence of LGL-grids Gp = Gp(I), produces meshes
D∗p := Dyadic [Gp, {I}, α] which enjoy additional structural properties useful for our purposes. First,
as the sets Gp are symmetric around the center of the interval, so will be the grids D∗p, always con-
taining the center as a node. Next, a major requirement on the dyadic partitions associated with the
Gp’s is that they are nested, which will later be essential in the context of the ASM. Unfortunately,
numerical evidence shows that the grids D∗p are not necessarily nested, although exceptions seem to
be very rare (see [9]). Thus, in order to ensure nestedness of the generated dyadic meshes, we shall
employ the following recursive definition:

Gp → Dp:

(i) Given α > 0, set
D1 := Dyadic[G1, {I}, α].

(ii) For p > 1, given Dp−1, set
Dp := Dyadic[Gp,Dp−1, α]. (6.11)

Property 6.5. For all p ≥ 1, the dyadic meshes Dp are nested and locally (A,B)-uniformly equiv-
alent to Gp with constants A,B specified as follows:

∀D ∈ Dp , ∀Ij ∈ Tp , Ij ∩D 6= ∅ =⇒ A := α−1 ≤ |Ij |
|D|
≤ 2Cg

min{αC−1
g , 1}

=: B . (6.12)

Furthermore,
cardDp ' cardGp . (6.13)
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In order to keep the cardinality of Dp as close as possible to that of Gp, numerical evidence suggests
to choose the parameter α ≥ 1, to guarantee gradedness of the dyadic mesh, but close to 1, to avoid
excessively many points in the dyadic mesh, see [9] for more details.
The following useful generalization is an easy consequence of Properties 6.3 and 6.5.

Corollary 6.6. Assume that c p ≤ q ≤ p for some fixed constant c > 0. Then, Dq is locally (A,B)-
uniformly equivalent to both Gp and Dp, with A and B depending on the proportionality factor c but
not on p.

6.3 Stability results for univariate interpolation operators
In the rest of the paper, we assume that we have fixed a value α ≥ 1 close to 1 and consequently
for any interval I we have generated by the recursion (6.11) the sequence Dp(I) of dyadic meshes
associated with the LGL-grids Gp(I). Let GD,p(I) denote the set of dyadic nodes in I which define
the partition Dp(I), i.e., such that Dp(I) = T (GD,p(I)). Furthermore, let us introduce the finite
element space

Vh,D,p(I) = Vh(Dp(I)) = {v ∈ C0(I) : v|D ∈ P1 , ∀D ∈ Dp(I)} (6.14)

of the continuous, piecewise linear functions on the partition Dp(I), and let

Ih,D,p : C0(I)→ Vh,D,p(I) , (Ih,D,pv)(ζ) = v(ζ) ∀ζ ∈ GD,p(I) , ∀v ∈ C0(I) , (6.15)

be the interpolation operator at the nodes of GD,p(I). We also introduce the composite interpolation
operator

Kh,D,p : C0(I)→ Vh,D,p(I) , Kh,D,p = Ih,D,p ◦ Ih,p . (6.16)

We proceed now to establish various stability results involving these operators.

Lemma 6.7. Let G be any ordered grid in I, which defines a partition T = T (G), and let IG :
H1(I)→ Vh(T ) be the associated piecewise linear interpolation operator. Then,

|IGv|1,I ≤ |v|1,I ∀v ∈ H1(I) .

Proof. Let G = {ξj : 0 ≤ j ≤ p}, with hj = ξj − ξj−1. Then,

|IGv|21,I =
p∑
j=1

∫ ξj

ξj−1

(
v(ξj)− v(ξj−1)

hj

)2
dx =

p∑
j=1

1
hj

(v(ξj)− v(ξj−1))2
.

Writing v(ξj)− v(ξj−1) =
∫ ξj

ξj−1
dv
dx and using the Cauchy-Schwarz inequality, we obtain

(v(ξj)− v(ξj−1))2 ≤ hj
∫ ξj

ξj−1

(
dv

dx

)2
,

whence the result follows.

Lemma 6.8. Let G and G̃ be ordered grids in I, with associated partitions T = T (G) and T̃ = T (G̃).
Assume that G and G̃ are locally (A,B)-uniformly equivalent. If IG : H1(I)→ Vh(T ) is the piecewise
linear interpolation operator associated with G, one has

‖IGv‖0,I . ‖v‖0,I ∀v ∈ Vh(T̃ ) ,

where the constant in the inequality depends only on the parameters A and B.
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Proof. Let G = {ξj : 0 ≤ j ≤ p} and T = {Ij : 1 ≤ j ≤ p}, with hj = |Ij | = ξj − ξj−1. Let us set

h(ξj) =


h1 if j = 0 ,
hj + hj+1 if 1 ≤ j ≤ p− 1 ,
hp if j = p .

(6.17)

Similarly, let G̃ = {ηi : 0 ≤ i ≤ q} and T̃ = {Ĩi : 1 ≤ i ≤ q}, with h̃i = |Ĩi| = ηi − ηi−1.
Furthermore, let h̃(ηi) be defined in a manner similar to (6.17). Given any v ∈ Vh(T̃ ), we have

‖IGv‖20,I =
p∑
j=1
‖Ihv‖20,Ij

'
p∑
j=1

(
v2(ξj) + v2(ξj−1)

)
hj =

p∑
j=0

v2(ξj)h(ξj) ,

and

‖v‖20,I =
q∑
i=1
‖v‖20,Ĩi

'
q∑
i=1

(
v2(ηi) + v2(ηi−1)

)
h̃i =

q∑
i=0

v2(ηi)h̃(ηi) .

Now, for any ξj there exist ηi and θ ∈ [0, 1) such that v(ξj) = (1 − θ)v(ηi) + θv(ηi+1), whence
v2(ξj) ≤ v2(ηi) + v2(ηi+1). If θ ∈ (0, 1), then ξj ∈ (ηi, ηi+1), hence both Ij and Ij+1 intersect Ĩi. By
the assumption of locally uniform equivalence of the two grids, we obtain |Ij | . |Ĩi| and |Ij+1| . |Ĩi|,
whence h(ξj) . h̃i ≤ min

(
h̃(ηi), h̃(ηi+1)

)
. On the other hand, if θ = 0, i.e., ξj = ηi, then Ij intersects

Ĩi and Ij+1 intersects Ĩi+1 (with the obvious adaptation if ξj is a boundary point), thus |Ij | . |Ĩi|
and |Ij+1| . |Ĩi|, which yields h(ξj) . h̃(ηi). This completes the proof.

From now on, let Ip, Ih,p, Ih,D,p, and Kh,D,p, resp., be the interpolation operators defined in
(6.5), (6.15) and (6.16), resp..

Property 6.9. For any p > 0, the operator Ip satisfies

|Ipv|1,I . |v|1,I , ∀v ∈ H1(I) ,

with a constant that does not depend on p.

Proof. The result is classical (see, e.g., [15]). It can be derived from Property 6.4 and Lemma 6.7
observing that Ipv = Ip(Ih,pv).

Property 6.10. [5, Remark 13.5] Assume that c p ≤ q ≤ p for some fixed constant c > 0. Then

‖Iqv‖0,I . ‖v‖0,I ∀v ∈ Pp(I) ,

with a constant depending on the proportionality factor c but not on p.

Property 6.11. Assume that c p ≤ q ≤ p for some fixed constant c > 0. Then,

|Ih,qv|m,I . |v|m,I ∀v ∈ Pp(I) , m = 0, 1 ,

with a constant depending on the proportionality factor c but not on p.

Proof. For m = 0, we observe that Ih,qv = Ih,q(Iqv), so that ‖Ih,qv‖0,I . ‖Iqv‖0,I . ‖v‖0,I by
Properties 6.4 and 6.10. The result for m = 1 is included in Lemma 6.7.

Property 6.12. Assume that c p ≤ q ≤ p for some fixed constant c > 0. Then, for m = 0, 1 one has

|Iqv|m,I ' |Ih,qv|m,I . |v|m,I ∀v ∈ Vh,D,p(I) ,

|Ih,D,qv|m,I . |v|m,I ∀v ∈ Vh,D,p(I) ,

|Ih,D,qv|m,I . |v|m,I ∀v ∈ Vh,p(I) .
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Proof. The results for m = 0 follow from Lemma 6.8 applied in various combinations to the grids
Gq(I), Gp(I), Dq(I) and Dp(I), that are locally uniformly equivalent to each other by Corollary 6.6.
The results for m = 1 follow again from Lemma 6.7.

Combining the bounds in the two previous properties, we obtain the following result.

Property 6.13. Assume that c p ≤ q ≤ p for some fixed constant c > 0. Then one has

|Kh,D,qv|m,I . |v|m,I ∀v ∈ Pp(I) , m = 0, 1 .

6.4 Tensor-product interpolation operators
Tensorization of the univariate interpolation operators considered above yields multivariate inter-
polation operators on (hyper-)rectangles. Given any such element R =×d

k=1 Ik ∈ R as defined in
(2.7), let

Ip = IRp : C0(R)→ Qp(R) , IRp =
d⊗
k=1
IIk
pk

(6.18)

be the global polynomial interpolation operator at the nodes of the tensor product LGL-grid Gp(R)
introduced in (2.8). On the other hand, let Tp(R) = T (Gp(R)) be the partition of R into (hyper-
)rectangles S = S` = ×d

k=1 Ik,`k
for ` ∈ ×d

k=1{1, . . . , pk}, where each Ik,`k
is an interval in the

partition Tpk
(Ik) of Ik. Then, we set

Vh,p(R) = {v ∈ C0(R) : v|S ∈ Q1 ∀S ∈ Tp(R)} =
d⊗
k=1

Vh,pk
(Ik) , (6.19)

and introduce the piecewise multilinear interpolation operator on the LGL-grid Gp(R)

Ih,p = IRh,p : C0(R)→ Vh,p(R) , IRh,p =
d⊗
k=1
IIk

h,pk
. (6.20)

Similarly, let Dp(R) = T (GD,p(R)) be the partition of R into dyadic (hyper-)rectangles E = Em =
×d

k=1Dk,mk
, where each Dk,mk

is a dyadic interval in the partition Dpk
(Ik) of Ik. Then, we set

Vh,D,p(R) = {v ∈ C0(R) : v|E ∈ Q1 ∀E ∈ Dp(R)} =
d⊗
k=1

Vh,D,pk
(Ik) , (6.21)

and introduce the piecewise multilinear interpolation operator on the associated dyadic grid GD,p(R)

Ih,D,p = IRh,D,p : C0(R)→ Vh,D,p(R) , IRh,D,p =
d⊗
k=1
IIk

h,D,pk
. (6.22)

Finally, we set

Kh,D,p = KRh,D,p : C0(R)→ Vh,D,p(R) , KRh,D,p = IRh,D,p ◦ IRh,p . (6.23)

Given any l-dimensional facet F ∈ Fl, the analogous definition of the finite dimensional spaces
Qp(F ), Vh,p(F ) and Vh,D,p(F ), as well as the corresponding interpolation operators IFp , IFh,p and
IFh,D,p, is straightforward.
The analysis of our tensor-product interpolation operators relies on the following classical result.
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Proposition 6.14. For 1 ≤ k ≤ d, let Wk, Vk ⊂ H1(Ik) be finite dimensional subspaces. Let
Lk : Wk → Vk be linear operators satisfying, for m = 0, 1,

‖Lkv‖m,Ik
. ‖v‖m,Ik

∀v ∈Wk . (6.24)

Then, setting W :=
⊗d

k=1Wk and V :=
⊗d

k=1 Vk, the operator A =
⊗d

k=1Ak : W → V satisfies,
for m = 0, 1,

‖Lv‖m,R . ‖v‖m,R ∀v ∈W . (6.25)
In addition, if the norms in (6.24) for m = 1 can be replaced by seminorms, i.e.,

|Lkv|1,Ik
. |v|1,Ik

∀v ∈Wk, 1 ≤ k ≤ d , (6.26)

then, the same occurs in (6.25) for m = 1, i.e.,

Lv|1,R . |v|1,R ∀v ∈W . (6.27)

The first consequence of this result is the multidimensional version of Property 6.4. It states that
the operator IRh,p induces a topological isomorphims between Qp(R) and Vh,p(R) equipped with the
L2 or H1 norms, whose inverse is induced by IRp .

Property 6.15. For any v ∈ Qp(R), set vh := IRh,p(v). Then,

‖v‖0,R ' ‖vh‖0,R and ‖∇v‖0,R ' ‖∇vh‖0,R . (6.28)

The constants in both relations are independent of p and H.

Using Lemmas 6.7 and 6.8, Proposition 6.14 yields the following general result.

Property 6.16. For 1 ≤ k ≤ d, let Gk and G̃k be ordered grids in Ik, with associated parti-
tions Tk and T̃k, which are locally (A,B)-uniformly equivalent; let IGk

= IIk

Gk
: H1(Ik) → Vh(Tk)

be the piecewise linear interpolation operator associated with Tk. Consider the spaces Vh(T ) :=⊗d
k=1 Vh(Tk) and Vh(T̃ ) :=

⊗d
k=1 Vh(T̃k) of piecewise multi-linear functions on the cartesian parti-

tions T :=×d
k=1 Tk and T̃ :=×d

k=1 T̃k of R. Then, the piecewise multilinear interpolation operator
IG = IRG :=

⊗d
k=1 I

Ik

Gk
: C0(R)→ Vh(T ) satisfies

‖IGv‖m,R . ‖v‖m,R ∀v ∈ Vh(T̃ ) , m = 0, 1 ,

where the constant in the inequality depends only on the parameters A and B.

In the sequel, the inequality q ≤ p between two multi-indices p, q ∈ Nd is to be understood
componentwise, i.e., qk ≤ pk for all k. From Property 6.12 and Proposition 6.14, we immediately
get the following multidimensional result.

Property 6.17. Assume that c p ≤ q ≤ p for some fixed constant c > 0. Then,

|Iqv|m,R . |v|m,R ∀v ∈ Vh,D,p(R) , m = 0, 1 ,

with a constant depending on the proportionality factor c but not on p.

Finally, from Property 6.13 and Proposition 6.14, we immediately get the following multivariate
result.

Property 6.18. Assume that c p ≤ q ≤ p for some fixed constant c > 0. Then,

|Kh,D,pv|m,R . |v|m,R ∀v ∈ Qp(R) , m = 0, 1 ,

with a constant depending on the proportionality factor c but not on p.
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6.5 A localized Jackson estimate for the interpolation error
For the verification of certain ASM conditions in the next section, we will need Jackson estimates
for piecewise multilinear interpolation errors, which involve the meshsize in a localized, cell-wise
manner. Since these results will be applied to both the LGL- and the dyadic tensorized grids, with
various choices of finite-dimensional function spaces (comprised of either piecewise multi-linear or
global polynomial functions), we first establish the key estimates in suitable generality in order to
specialize them later to the cases at hand.
Consider again the general piecewise multilinear interpolation operator IG = IRG : C0(R)→ Vh(T )

introduced in the statement of Property 6.16 above. In addition, assume that each grid Gk is locally
quasiuniform according to Definition 6.1. For k = 1, . . . , d, letWk be a finite dimensional subspace of
H1(Ik) to be specified later. Then, the univariate piecewise linear interpolation operator IGk

= IIk

Gk

is well-defined on Wk and we have

‖IGk
v‖0,Ik

≤ c̄k‖v‖0,Ik
∀v ∈Wk , (6.29)

for some constant c̄k > 0 independent of the size |Ik| but possibly depending on the dimension of
Wk (although this will not be the case in all our applications). Let us set W =

⊗d
k=1Wk.

Next, consider the cells S` forming the partition T = ×d
k=1 Tk, i.e., T = {S` = ×d

k=1 Ik,`k
:

Ik,`k
∈ Tk} , and let h` := maxk |Ik,`k

| be the largest one-dimensional size of the cell S`. Let
h =

∑
` h`χS`

be the meshsize function defined in R.
The following localized Jackson estimate will be used several times in Sect. 7 for proving certain

ASM conditions.

Proposition 6.19. The following estimate holds

‖h−1(v − IGv)‖0,R . |v|1,R ∀v ∈W , (6.30)

where the constant implied by the inequality is independent of the meshsize but depends on the
constants c̄k introduced in (6.29).

Proof. The result will be obtained by assembling local estimates in each cell S`, which in turn are
derived by a scaling argument from corresponding estimates on the unit box Bd = [0, 1]d, with
B = [0, 1]. To this end, let IBk := IBk

1 denote the multilinear interpolation operator on Bk, i.e.,

IBkv =
∑

ξ∈F0(Bk)

v(ξ)Φξ ,

where Φξ denotes the multilinear Lagrange basis function satisfying Φξ(ξ′) = δξ,ξ′ for ξ, ξ′ ∈ F0(Bk).
We make heavy use of the fact that IBd is a tensor product operator, i.e., we have IBd = ⊗dIB .
Moreover, it will be convenient to employ the following convention to write, for any k = 1, . . . , d,

Bd = Ak ×Bd−k ,

meaning that Ak is the unit k-cube representing the first k variables and Bd−k is the unit (d−k)-cube
for the coordinates d− k + 1, . . . , d, .

Lemma 6.20. Let W =
⊗d

k=1Wk, where Wk are finite-dimensional subspaces of H1(B). Then,
one has

‖v − IBdv‖20,Bd .
d∑
k=1

∑
ξ∈G(Ak−1)

‖∂xk
v(ξ, ·)‖20,Bd−k+1 , ∀v ∈ W , (6.31)

(with the first summand on the right-hand side to be understood as ‖∂x1v‖20,Bd), where the constant
depends only on d.
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Proof. Notice first that for e := v − IBv one has (IBv)′ = v(1) − v(0) =
∫ 1

0 v
′(s)ds so that e(x) =∫ x

0 v
′(s)ds− x

∫ 1
0 v
′(s)ds from which one easily derives that

‖v − IBv‖0,B ≤ 2|v|1,B , v ∈ H1(B). (6.32)

Next, denoting by id the identity operator on B, and writing

v − IBdv =
d∑
k=1

(
(IBk−1 ⊗ idd−k+1)v − (IBk ⊗ idd−k)v

)
=

d∑
k=1

(
idk−1 ⊗ (id−IB)⊗ idd−k

)
(IBk−1 ⊗ idd−k+1)v,

we note that, when abbreviating wk := (IBk−1 ⊗ idd−k+1v), for x′k := (x1, , . . . , xk−1, xk+1, . . . , xd)
one has

(idk−1 ⊗ (id−IB)⊗ idd−k)wk(x1, . . . , xk−1, ξk, xk+1, . . . , xd) = 0, ξk = 0, 1, x′k ∈ Ak−1 ×Bd−k.

Hence, we can apply (6.32) to conclude that∥∥(idk−1 ⊗ (id−IB)⊗ idd−k
)
wk
∥∥

0,Bd ≤ 2‖∂xk
wk‖0,Bd .

For k ≥ 2, notice that wk(ξ, ·) = v(ξ, ·), ξ ∈ F0(Ak−1) and that wk is affine in the first k−1 variables.
Hence, we conclude that

‖∂xk
wk‖20,Bd .

∑
ξ∈F0(Ak−1)

‖∂xk
v(ξ, ·)‖20,Bd−k+1 ,

from which the assertion of Lemma 6.20 easily follows.

To complete the proof of Proposition 6.19 consider now a generic cell S` ∈ T , which we can write
as

S` =
( k×
l=1

Il,`l

)
×
( d×
l=k+1

Il,`l

)
=: Ak` ×Bd−k` .

Given any v ∈ W and considering its restriction to S`, we write v̂(x̂) = v(x) with x̂ ∈ Bd, so that
(IS`

v)(x) = (IBd v̂)(x̂); setting hl,`l
:= |Il,`l

|, a standard affine change of variables yields in view
of (6.31),

‖v − IS`
v‖20,S`

= |S`|‖v̂ − IBd v̂‖20,Bd . |S`|
d∑
k=1

∑
ξ∈F0(Ak−1)

‖∂x̂k
v̂(ξ, ·)‖20,Bd−k+1

. |S`|
d∑
k=1

∑
ξ∈F0(Ak−1

`
)

|Bd−k+1
` |−1h2

k,`k
‖∂xk

v(ξ, ·)‖20,Bd−k+1
`

. h2
`

d∑
k=1

∑
ξ∈F0(Ak−1

`
)

|Ak−1
` | ‖∂xk

v(ξ, ·)‖20,Bd−k+1
`

.

(6.33)

Dividing both sides by h2
` and summing over ` provides

‖h−1(v − IGv)‖20,R .
d∑
k=1

∑
S`∈T

∑
ξ∈F0(Ak−1

`
)

|Ak−1
` | ‖∂xk

v(ξ, ·)‖20,Bd−k+1
`

.
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Now, |Ak−1
` | =

∏k−1
l=1 hl,`l

'
∏k−1
l=1 wl,ξl

for each ξ ∈ F0(Ak−1
` ), where the weights wl,ξl

are defined
by the conditions ∑

ξl∈Gl

v2(ξl)wl,ξl
= ‖IGl

v‖20,Il
∀v ∈ C0(Il) .

Then, the assertion follows from (6.29).

7 Stage SE-CG → DFE-CG
We turn now to the second stage of our iterated auxiliary space preconditioner, namely the construc-
tion of a preconditioner for the conforming spectral-element problem introduced in Sect. 5. The new
preconditioner will be based on an additional auxiliary space, comprised of globally continuous
piecewise affine elements on conformingly matched dyadic meshes. The latter are associated with
the LGL-grids used in the spectral-element discretization according to the construction mentioned
in the previous section.

7.1 Definition of the ASM ingredients
The roles of the spaces V and Ṽ appearing in the ASM (see Sect. 3) are now as follows. Let us set
V := Vδ ∩H1

0 (Ω), where Vδ is defined in (2.15), while Ṽ := Vh,D ∩H1
0 (Ω), where

Vh,D = {v ∈ C0(Ω) : ∀R ∈ R , v|R := vR ∈ Vh,D,p(R)} . (7.1)

Note that since the dyadic grids are by construction nested, the trace spaces obtained by restricting
Vh,D to any interface of two adjacent elements are non-trivial. Also note that now Ṽ 6⊂ V so that
the full ASM assumptions have to be checked.
Since all our finite dimensional spaces are contained in H1

0 (Ω) we set

â(u, v) = ã(u, v) = a(u, v) = (∇u,∇v)0,Ω =
∑
R∈R

(∇u,∇v)0,R =:
∑
R∈R

aR(u, v) .

We next have to specify the auxiliary form b. A central point of this section is the fact that we
can no longer choose the form b as in Definition 5.1. In this original form it was designed to absorb
the jump terms which are now missing. In the current situation it would therefore certainly ensure
(3.3) but would actually be too strong an overestimation of the bilinear form a caused by using
an inverse estimate on strongly anisotropic hyper-rectangles. As a consequence, one now runs into
difficulties verifying the conditions (3.6) and (3.7). Our modifications are guided by the following
closer look at the form a. The restriction aR(u, v) of a(u, v) to any element R =×d

k=1 Ik is the sum
of d bilinear forms, i.e., aR(u, v) =

∑d
k=1 aR,k(u, v), where each form aR,k is the tensor product of

univariate forms
aR,k(u, v) =

∫
R

∂ku∂kv dx =
∫
R′

k

(∫
Ik

∂ku∂kv dxk

)
dx′,

with R′k =×` 6=k I`.
The idea is to “weaken” the bilinear form b by avoiding the inverse estimates in regions where the

LGL-grid is too anisotropic while preserving the validity of (3.3). Our ansatz for the form b(u, v)
follows the above structure of a, i.e., we set

b(u, v) =
∑
R∈R

bR(u, v) , bR(u, v) =
d∑
k=1

bR,k(u, v). (7.2)

Moreover, recall that for v ∈ Qp(R) and vh := IRh,p(v) our norm equivalences imply aR,k(v, v) '
aR,k(vh, vh). Hence, it suffices to arrange that aR,k(vh, vh) . bR,k(v, v). We proceed now defining



Multilevel Preconditioning of DG-SEM, Part I: Geometrically Conforming Meshes 27

bR,k(u, v) in a cell-wise manner for any u, v ∈ V + Ṽ . To that end, we first decompose R into the
d-dimensional LGL-subcells S` = S`(R) =×d

k=1 Ik,`k
for ` ∈×d

k=1{1, . . . , pk}, where p = p(R) and
each partition Tk(Ik) = T (Gpk

(Ik)) = {Ik,i : 1 ≤ i ≤ pk} is generated by the LGL-grid Gpk
(Ik).

Next, for each 1 ≤ k ≤ d, we decompose the partition T (R) = {S`(R)} of R into two parts T (0)
k (R),

T (1)
k (R) defined as follows. Setting hl,`l

:= |Il,`l
| and fixing a constant Caspect > 0, we let

S` ∈ T (0)
k (R) if maxl 6=k hl,`l

hk,`k

> Caspect, S` ∈ T (1)
k (R) otherwise. (7.3)

Thus T (0)
k (R) and T (1)

k (R) are comprised of “strongly anisotropic” and “sufficiently isotropic" cells,
respectively. In analogy to aR,k(uh, vh) =

∑
S`∈T (R) aR,k,S`

(uh, vh) we make an ansatz for bR,k(u, v)
as

bR,k(u, v) =
∑

S`∈T (0)
k

(R)

b
(0)
R,k,S`

(u, v) +
∑

S`∈T (1)
k

(R)

b
(1)
R,k,S`

(u, v) =: b
(0)
R,k(u, v) + b

(1)
R,k(u, v) , (7.4)

so that we still have aR,k,S`
(uh, vh) . b

(i)
R,k,S`

(u, v) for all S` ∈ T (i)
k (R), i = 0, 1, as follows. In

analogy to the factorization R = Ik × R′k, we define for every S` ∈ T (R) the (d − 1)-dimensional
hyper-rectangle S′`,k := S′`,k(R) :=×d

l=1,l 6=k Il,`l
. The idea is to bound the terms∫

S`

∂xk
uh∂xk

vh dx =
∫
S′

`,k

(∫
Ik,`k

∂xk
uh(xk, x′)∂xk

vh(xk, x′) dxk

)
dx′

by using quadrature in all but the k-th variable while keeping the integral with respect to the k-th
variable for S` ∈ T (0)

k (R), and applying an inverse estimate for S` ∈ T (1)
k (R). Specifically, using the

tensorized trapezoidal rule for integration over S′`,k, which is the finite-element lumped mass matrix
approximation [15, (4.4.44) on p. 220], we define for S` ∈ T (0)

k (R)

b
(0)
R,k,S`

(u, v) :=
∑

ξ′∈F0(S′
`,k

)

ω′`,k

∫
Ik,`k

∂xk
uh(xk, ξ′)∂xk

vh(xk, ξ′) dxk , (7.5)

where the weight

ω′`,k =
d∏

l=1,l 6=k
hl,`l

= vold−1(S′`,k) (7.6)

is equal to the (d−1)-dimensional volume of S′`,k, and as before, F0(S′`,k) is the set of all its vertices.
Note that this set is isomorphic to Gp(R)(R) ∩ (S′`,k × {ξ}), where ξ denotes any endpoint of the
interval Ik,`k

= [ξk,`k
, ξk,`k+1].

On the other hand, for each S` ∈ T (1)
k (R) we apply to each summand of (7.5) the inverse estimate∫

Ik,`k

[∂xk
uh(xk, x′)]

2
dxk ≤

2
hk,`k

[
u2
h(ξk,`k

, x′) + u2
h(ξk,`k+1, x

′)
]
,

which leads us to define for S` ∈ T (1)
k (R)

b
(1)
R,k,S`

(u, v) :=
∑

ξ′∈F0(S′
`,k

)

∑
ξ∈F0(Ik,`k

)

cξ,ξ′
ω′`,k
hk,`k

uh(ξ, ξ′) vh(ξ, ξ′) , (7.7)

where as before the cξ,ξ′ are tuning constants of order one which have to be chosen judiceously in
practical applications. To simplify the exposition we shall suppress them in what follows.
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In summary, we have

b(u, v) =
∑
R∈R

d∑
k=1

( ∑
S`∈T (0)

k
(R)

b
(0)
R,k,S`

(u, v) +
∑

S`∈T (1)
k

(R)

b
(1)
R,k,S`

(u, v)
)
, (7.8)

where b(i)R,k,S`
(u, v), i = 0, 1, are defined by (7.5), (7.7), respectively. By construction this bilinear

form satisfies the ASM condition (3.3).

Property 7.1. One has
a(v, v) . b(v, v) ∀v ∈ V . (7.9)

Note that the relation (7.9) can be viewed as an inverse estimate.

Let us define next the operatorsQ and Q̃, starting with the former one. Obviously, this can be done
element-wise, so let us fix again an element R ∈ R. Given any ṽ ∈ Ṽ , let us set ṽR := ṽ|R ∈ Vh,D,p(R).
Let us denote for any vertex z ∈ F0(R) of R by

{E1, E2, . . . , Ed} = F1(z) ∩ F1(R)

the set of edges of R containing z, with Ek parallel to the k-th coordinate direction. Let us also
introduce the vector of polynomial degrees

p∗z = (p](E1), p](E2), . . . , p](Ed)) ∈ Nd

and note that, by definition of p](Ek) (recall (5.8)), we have p∗z ≤ p(R) componentwise. Finally,
let us introduce the localizing function Φz ∈ Q1(R), defined by the conditions Φz(y) = δy,z for all
y ∈ F0(R). Then, we set

ṽ∗z := IRh,D,p∗z (Φz ṽR) ∈ Vh,D,p∗z (R) and v∗z = IRp∗z ṽ
∗
z ∈ Qp∗z (R) . (7.10)

Summing-up over the vertices of R, we define

ṽ∗R :=
∑

z∈F0(R)

ṽ∗z ∈ Vh,D,p(R) and QRṽR := v∗R :=
∑

z∈F0(R)

v∗z ∈ Qp(R) . (7.11)

The following properties will be useful in the sequel.

Property 7.2. For any edge E ∈ F1(R), one has

(ṽ∗R)|E = (ṽR)|E .

Proof. If E has vertices z1 and z2, then(
ṽ∗z1

+ ṽ∗z2

)
|E = IEh,D,p](E) ((Φz1 + Φz2)ṽR)|E = IEh,D,p](E) (ṽR)|E = (ṽR)|E

since by continuity (ṽR)|E ∈ Vh,D,p](E)(E); on the other hand, (ṽ∗y)|E = 0 for all y ∈ F0(R)\{z1, z2}.
Thus, (ṽ∗R)|E =

(
ṽ∗z1

+ ṽ∗z2

)
|E = (ṽR)|E .

Property 7.3. For any interface F ∈ Fd−1, with R(F ) = {R′, R′′}, one has

(ṽ∗R′)|F = (ṽ∗R′′)|F and (v∗R′)|F = (v∗R′′)|F .
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Proof. Let F0(F ) = F0(R′) ∩ F0(R′′) be the set of vertices of F . Since, by continuity of ṽ, ṽF :=
(ṽR′)|F = (ṽR′′)|F , one has

(
Φz ṽR′

)
|F = ΦFz ṽF =

(
Φz ṽR′′

)
|F , z ∈ F0(F ), where ΦFz ∈ Q1(F ) satisfies

ΦFz (y) = δy,z for all y ∈ F0(F ). Hence, denoting by q∗z = (p∗z)′ ∈ Nd−1 the reduced degree vector
obtained from p∗z by dropping the component in the direction orthogonal to F , one concludes that

(ṽ∗R′)|F =
∑

z∈F0(F )

IFh,D,q∗z (Φz ṽR′)|F =
∑

z∈F0(F )

IFh,D,q∗z
(
ΦFz ṽF

)
=

∑
z∈F0(F )

IFh,D,q∗z (Φz ṽR′′)|F = (ṽ∗R′′)|F ,

where we have used that q∗z is the same for both R′ and R′′. This confirms the first part of the
assertion. Abbreviating ṽFz := IFh,D,q∗z

(
ΦFz ṽF

)
, the second one follows from

(v∗R′)|F =
∑

z∈F0(F )

IFq∗z ṽ
F
z = (v∗R′′)|F ,

which completes the proof.

The previous property guarantees interelement continuity of the functions ṽ∗R and v∗R, justifying
the following definition of the operator Q.

Definition 7.4. Let Q : Ṽ → V be given by

(Qṽ)|R = QRṽR = v∗R ∀R ∈ R ∀ṽ ∈ Ṽ ,

where v∗R is defined in (7.11).

The definition of the operator Q̃ follows the same lines as above. Given any v ∈ V and any R ∈ R,
we set vR = v|R ∈ Qp(R). Then, the chain (7.10)-(7.11) is replaced by the following one:

v∗z := IRp∗z (ΦzvR) ∈ Qp∗z (R) and ṽ∗z := KRh,D,p∗z v
∗
z ∈ Vh,D,p∗z (R) . (7.12)

Summing over the vertices of R, we define

v∗R :=
∑

z∈F0(R)

v∗z ∈ Qp(R) and Q̃RvR := ṽ∗R =
∑

z∈F0(R)

ṽ∗z ∈ Vh,D,p(R) . (7.13)

As above, one easily confirms interelement continuity, which suggests the following definition.

Definition 7.5. The operator Q̃ : V → Ṽ is given by

(Q̃v)|R := Q̃RvR = ṽ∗R ∀R ∈ R ∀v ∈ V ,

where ṽ∗R is defined in (7.13).

7.2 Check of the ASM assumptions for Q and Q̃

Hereafter, we deal with the ASM conditions (3.5) and (3.7) involving the operator Q, as well as (3.4)
and (3.6) involving the operator Q̃

Proposition 7.6. The operator Q is linear and satisfies the continuity assumption (3.5).
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Proof. We have to prove that |Qṽ|1,Ω . |ṽ|1,Ω for all ṽ ∈ Ṽ . This follows if, for any R ∈ R, we prove
that

|v∗R|1,R . |ṽR|1,R ∀ṽR ∈ Vh,D,p(R) . (7.14)
A classical mapping-and-scaling argument in Finite Element analysis tells us that this result holds
provided it holds when R is the reference element R̂ =×d

k=1 Î, with Î = [−1, 1]. For this element,
it is enough to prove that

|v∗|1,R̂ . ‖ṽ‖1,R̂ ∀ṽ ∈ Vh,D,p(R̂) . (7.15)
Indeed, changing ṽ into ṽ + c, by any c ∈ R, does not change the left-hand side, whence

|v∗|1,R̂ . inf
c∈R
‖ṽ + c‖1,R̂ . |ṽ|1,R̂ .

In order to establish (7.15), let us first consider a univariate function ṽ ∈ Vh,D,p(Î) and let Φ denote
the affine function taking the value 1 at one endpoint of the interval and 0 at the other one. Let us
prove that if cp ≤ q ≤ p for some fixed constant c > 0, one has

|Ih,D,q(Φṽ)|m,Î . ‖ṽ‖m,Î , m = 0, 1 , (7.16)

where, of course, the involved constant depends on the proportionality factor c. For m = 0, we have

‖Ih,D,q(Φṽ)‖20,Î .
∑

ζ∈GD,q(Î)

(Φ(ζ)ṽ(ζ))2hD,q(ζ) .
∑

η∈GD,p(Î)

ṽ(η)2hD,p(η) . ‖ṽ‖20,Î ,

since Φ2 ≤ 1 and hD,q(ζ) . hD,p(ζ) for all ζ ∈ GD,q(Î) ⊆ GD,p(Î). Form = 1, we have by Lemma 6.7,

|Ih,D,q(Φṽ)|1,Î . |Φṽ|1,Î . ‖ṽ‖1,Î ,

where the last inequality holds since we are working on the reference element. Hence, (7.16) is
proven. Using this result and Proposition 6.14, we obtain the bound

|ṽ∗z |1,R̂ . ‖ṽ‖1,R̂

for each function ṽ∗z defined as in (7.10) on R̂. Then, Property 6.17 yields |v∗z |1,R̂ . ‖ṽ‖1,R̂, and
(7.15) follows by the triangle inequality, since |F0(R̂)| ' 1.

Proposition 7.7. The operator Q satisfies the Jackson condition (3.7), i.e., one has

b(ṽ −Qṽ, ṽ −Qṽ) . |ṽ|21,Ω ∀ṽ ∈ Ṽ ,

where the multiplicative constant in the above estimate depends on the constant Caspect in (7.3).

Proof. For each R ∈ R and each k = 1, . . . , d, let us recall the definitions (7.4), (7.5) and (7.7) of the
form bR,k(u, v) and its portions b(0)

R,k(u, v) and b
(1)
R,k(u, v). Concerning the former portion, observe

that

b
(0)
R,k(v, v) =

∑
S`∈T (0)

k
(R)

∑
ξ′∈G(S′

`,k
)

ω′`,k

∫
Ik,`k

∣∣∂xk
IRh,pv(ξ′, xk)

∣∣2 dxk
'

∑
S`∈T (0)

k
(R)

∫
S`

∣∣∂xk
IRh,pv(x)

∣∣2 dx ≤ ∑
S`∈T (R)

∫
S`

∣∣∂xk
IRh,pv(x)

∣∣2 dx ≤ |IRh,pv|21,R , (7.17)

where we have used the uniform equivalence of the weights ω′`,k (see (7.6)) with the integration
weights for multi-linear functions on the cell S′`,k. Thus, for all ṽR ∈ Vh,D,p(R), we have

b
(0)
R,k(ṽR −QRṽR, ṽR −QRṽR) . |IRh,p(ṽR −QRṽR)|21,R

. |IRh,p(ṽR)|21,R + |IRh,p(QRṽR)|21,R . |ṽR|21,R ,
(7.18)
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where the last bound follows immediately from Lemma 6.8, Properties 6.11 and 6.16, and Proposi-
tion 7.6.
Consider now the portion b(1)

R,k(u, v). Arguing as above, one has

b
(1)
R,k(v, v) =

∑
S`∈T (1)

k
(R)

∑
ξ′∈G(S′

`,k
)

ω′`,k
∑

ξ∈G(Ik,`k
)

h−1
k,`k
|IRh,pv(ξ′, ξ)|2 '

∑
S`∈T (1)

k
(R)

∫
S`

h−2
k,`k
|IRh,pv(x)|2 dx .

Now observe that, by definition of T (1)
k (R) (see (7.3)), one has hk,`k

≥ max(1, C−1
aspect)h`, with

h` = maxl hl,`l
. Hence,

b
(1)
R,k(v, v) .

∑
S`∈T (1)

k
(R)

∫
S`

h−2
` |I

R
h,pv(x)|2 dx ≤

∑
S`∈T (R)

∫
S`

h−2
` |I

R
h,pv(x)|2 dx

= ‖h−1IRh,pv‖20,R . ‖h−1(v − IRh,pv)‖20,R + ‖h−1v‖20,R ,

where h =
∑
` h`χS`

is the LGL meshsize function in R. If ṽR ∈ Vh,D,p(R), this yields

b
(1)
R,k(ṽR −QRṽR, ṽR −QRṽR) . ‖h−1(ṽR − IRh,pṽR)‖20,R + ‖h−1(QRṽR − IRh,p(QRṽR))‖20,R

+ ‖h−1(ṽR −QRṽR)‖20,R .
(7.19)

Now we invoke Proposition 6.19, with different choices of the grid G and the space W , to bound
each of the three summands on the right-hand side. For the first summand, we have G = Gp(R) (the
LGL-grid of order p in R) and W = Vh,D,p(R). We note that, due to Lemma 6.8, the bounds (6.29)
are satisfied with c̄k . 1. Thus we get

‖h−1(ṽR − IRh,pṽR)‖20,R . |ṽR|21,R . (7.20)

For the second summand, we recall that QRṽR ∈ Qp(R), so that we have again G = Gp(R), whereas
now W = Qp(R). The bounds (6.29) are now satisfied with c̄k . 1 because of Property 6.11. Thus,
recalling (7.14), we obtain

‖h−1(QRṽR − IRh,p(QRṽR))‖20,R . |QRṽR|21,R . |ṽR|21,R . (7.21)

At last, we bound the third summand on the right-hand side of (7.19). To this end, recalling the
definition (7.11) of QRṽ, noting that ṽR =

∑
z∈F0(R) Φz ṽR, and defining ṽz := Φz ṽR, z ∈ F0(R), it

suffices to bound the quantity ‖h−1(ṽz − IRp∗z (IRh,D,p∗z ṽz))‖
2
0,R for each z ∈ F0(R). Writing

ṽz − IRp∗z (IRh,D,p∗z ṽz) = (ṽz − IRh,D,p∗z ṽz) + (IRh,D,p∗z ṽz − I
R
p∗z

(IRh,D,p∗z ṽz)),

and setting for simplicity w̃z = IRh,D,p∗z ṽz ∈ Vh,D,p∗(R), we have

‖h−1(ṽz − IRp∗z (IRh,D,p∗z ṽz))‖
2
0,R . ‖h−1(ṽz − IRh,D,p∗z ṽz))‖

2
0,R + ‖h−1(w̃z − IRp∗z w̃z)‖

2
0,R . (7.22)

We now proceed as in the proof of Proposition 7.6, i.e., we work on the reference element R̂ viewed
as an affine image of R. This simplifies handling the factor Φz when eventually bounding the H1-
seminorm of ṽz = Φz ṽR by that of ṽR on the element R.
We want to apply Proposition 6.19 to the first summand on the right-hand side of (7.22), with
G = Dp∗(R̂) (the dyadic grid of order p∗ in R̂) and W = ΦzVh,D,p∗(R̂). To this end, we observe
that the meshsize function h associated with the grid Gp(R̂), as a consequence of Corollary 6.6, is
uniformly comparable to the meshsize function hD,p∗ associated with the grid Dp∗(R̂), i.e., h ' hD,p∗
pointwise in R̂. On the other hand, the bounds (6.29) are satisfied with c̄k . 1; this easily follows
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from the fact that the restriction of ṽz to any cell of the grid Dp∗(R̂) is a piecewise multi-quadratic
function belonging to a finite dimensional space whose dimension is bounded independently of p.
Thus, we obtain

‖h−1(ṽz − IR̂h,D,p∗z ṽz))‖
2
0,R̂ . |ṽz|21,R̂ . ‖ṽR̂‖

2
1,R̂ . (7.23)

The second summand on the right-hand side of (7.22) can be bounded with the aid of Proposition 6.19
as well. Indeed, using the property that Ih,q(Iqv) = Ih,qv if Ih,qv and Iqv are the low- and high-order
interpolants of a continuous function on the same grid, one has

v − Iqv = v − Ih,q(Iqv) + Ih,q(Iqv)− Iqv = (v − Ih,qv)− (Iqv − Ih,q(Iqv)) .

In our situation, this yields with ũz = IR̂p∗z w̃z ∈ Qp∗(R̂)

‖h−1(w̃z − IRp∗z w̃z)‖
2
0,R̂ . ‖h−1(w̃z − IR̂h,p∗z w̃z)‖

2
0,R̂ + ‖h−1(ũz − IR̂h,p∗z ũz)‖

2
0,R̂ .

so that we can apply Proposition 6.19 with G = Gp∗(R̂) and either W = Vh,D,p(R̂) or W = Qp∗(R̂).
Again, the function h is uniformly comparable to the function hp∗ associated with the grid Gp∗(R̂),
and one easily checks that the bounds (6.29) are satisfied with c̄k . 1 with both choices of W . Thus,

‖h−1(w̃z − IR̂p∗z w̃z)‖
2
0,R̂ . |w̃z|21,R̂ . |ṽz|21,R̂ . ‖ṽR̂‖

2
1,R̂ , (7.24)

where the second inequality follows from Lemma 6.8 and Property 6.16. Going back to the element
R, the bounds (7.22), (7.23) and (7.24) imply

‖h−1(ṽz − IRp∗z (IRh,D,p∗z ṽz))‖
2
0,R . |ṽR|21,R ,

which, together with (7.20) and (7.21), allows us to obtain from (7.19)

b
(1)
R,k(ṽR −QRṽR, ṽR −QRṽR) . |ṽR|21,R .

This completes the proof of Proposition 7.7.

In a similar manner as above, one can check the ASM assumptions for Q̃, where essentially the
order of the operators Ip, Ih,D,p is interchanged. However, Lemma 6.8 allows us to argue as before.

Proposition 7.8. The operator Q̃ satisfies the continuity assumption (3.4) and the Jackson as-
sumption (3.6).

So far we have shown that the above choice of auxiliary spaces complies with the ASM require-
ments so that, in principle, the stage II preconditioner is again optimal. However, again it remains
to precondition the new auxiliary problem, i.e., to identify CÃ. As the auxiliary space Ṽ now
corresponds to a hierarchy of nested low order finite element spaces, this task looks more feasible.
Nevertheless, the strong anisotropy appearing in the underlying dyadic meshes poses a further ob-
struction. In fact, an asymptotically optimal treatment that works for arbitrary degrees seems to
preclude the application of standard tools. Therefore, we postpone this issue to the forthcoming
part II of this work where a multi-wavelet preconditioner will be proposed and analyzed. Here we
address in the following section a second obstruction, namely the fact that the Gramian B associated
with the auxiliary form b, defined by (7.8), is no longer diagonal, due to the coupling across element
interfaces and the remaining integrals of derivatives in strongly anisotropic grid areas.
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8 Numerical results

In this section we quantify the performance of the multi-stage preconditioner, examining first the
influence of the various ingredients in each of the two stages discussed in this paper. This includes the
resulting condition numbers and their dependence on the parameters, in particular on the polynomial
degrees. In the experiments the condition numbers are obtained as quotient of the largest and
smallest eigenvalue of the preconditioned linear systems of equations. Since the matrices involved
are large and sparse, we apply a Jacobi-Davidson type method for the eigenvalue computation that
is tailored to the specific needs in this application, see [9] for details.

8.1 Test cases

We now consider two test scenarios that represent typical situations involving varying polynomial
degrees when solving a Poisson problem (2.13) on the domain Ω = [0, 3]2 ⊂ R2 that is divided into
nine square patches of equal size as depicted in Fig. 2(a). This grid of 3 × 3 patches contains the
central patch that is not in contact with the domain boundary. Inside each patch we use at this point
just constant degree vectors, i.e., the polynomial degrees are the same in x- and y-direction inside
each patch. However, the polynomial degree may vary from patch to patch and we are interested
in quantifying the influence of patchwise varying polynomial degrees on the performance of our
preconditioning technique.
In this first test scenario we arrange the polynomial degrees in the nine patches to be either p or

q in a checkerboard-style pattern. Concerning the values of p, q ∈ N, we consider the following five
cases: (i) we either use constant polynomial degree q = p, (ii) simulate a small variation of the degree
by choosing q = p+ 2, or a large variation of the degree represented by multiplicative relations (iii)
q = 3/2p for even p, (iv) q = 7/4p for p chosen as a multiple of 4 or (v) q = 2p.

q × q

p× p q × q

p× p

p× p q × q

q × q

p× p

p× p

1 2 3 x0

1

2

3

y

(a) First test scenario: checkerboard-style grid.
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(b) Second test scenario.

Figure 2: Grid and distribution of polynomial degrees for the test scenarios. Darker shading indicates
higher polynomial degree in the patch.

In the second scenario we simulate a situation that typically arises in p-adaptation towards a
singularity, namely we solve Poisson’s equation (2.13) on Ω again split into 3 × 3 square patches.
Assuming a singularity located at the origin, the polynomial degree increases in directions away from
the singularity as illustrated in Fig. 2(b).



34 K. Brix. M. Campos Pinto, C. Canuto and W. Dahmen

8.2 Stage SE-DG → SE-CG
In the first stage, we apply the auxiliary space method to precondition the DG-spectral element
problem by an auxiliary problem given by a conforming Galerkin formulation. We first investigate
the resulting condition numbers and their dependence on the polynomial degrees for that stage only,
i.e., the auxiliary problem is solved exactly.

8.2.1 Choice of the bilinear form b(·, ·)

In Subsect. 5.2 the auxiliary bilinear form b in the first ASM stage is defined up to “tuning” constants
cξ ∼ 1 that still need to be specified for ξ ∈ Gp(R), R ∈ R. In view of the inverse estimate used in
the proof of Proposition 5.6, we define bδ : Vδ × Vδ → R as

bδ(u, v) = β1

c21 ∑
R∈R

∑
ξ∈Gp(R)

u(ξ) v(ξ)Wξ + γρ1
∑

F∈Fd−1

ωF
∑
±

∑
ξ∈Gp(F,R±)

wF,R±u
±(ξ)v±(ξ)

 ,

where wF,R± is the LGL quadrature weight on F seen as face of R±. Consequently, a reasonable
ansatz for the constants cξ in (5.7) is

cξ =
{
β1(c21 + γρ1ωFwF,R/Wξ), for ξ ∈ Gp(F,R), F ∈ Fd−1(R), R ∈ R,

β1c
2
1, else.

Preliminary experiments concerning the constant arising in the inverse estimate reveal that c21 = 10
is a good choice which we fix in our subsequent tests.
We emphasize that with this choice of b the corresponding matrix B is diagonal for any choice of

β1 > 0 and ρ1 ≥ 0, i.e., the complexity of solving a linear system with the matrix B is proportional
to the number of unknowns.

8.2.2 Optimal choice of the parameters β1 and ρ1

We next address the question of suitably specifying the parameters β1 and ρ1 in the bilinear form
b. In particular, is there a good choice for these parameters that works by and large independently
of other parameters, such as the polynomial degree? We investigate this problem for the first test
scenario and and the (extreme) case (v) q = 2p. The condition numbers κASM = κ(CAA) of the
linear system of equations preconditioned by the auxiliary space method, where the auxiliary problem
is solved exactly are depicted for p = 8 and for p = 16 in Fig. 3 as functions of β1 ∈ [0.05, 1.1] and
ρ1 ∈ [0, 2]; contour plots, i.e. the lines of constant condition number, are displayed.
We observe that the simple choice β1 = 1 and ρ1 = 0, which is cξ = 1, is not optimal. In fact, for

both p = 8 and p = 16 there is a very flat minimum of the condition number that is located near
the parameter point (β1, ρ1) = (0.15, 1.25). From now on we fix these parameter values for the rest
of the paper.

8.2.3 Dependence on the polynomial degrees

Now we are ready to investigate the key issue, namely the robustness of the preconditioner with
respect to the polynomial degrees. Fig. 4(a) shows the condition numbers obtained in the first
scenario for the relations (i) - (v) between p and q. We observe that the condition numbers stay
uniformly bounded as p increases although the upper bound depends on the ratio q/p. In the case
of additively increasing the polynomial degree q = p + 2, the quotient q/p decreases which is also
visible in Fig. 4(a).
The analogous plot for the second test scenario, representing a typical p-adaptation, is depicted in

Fig. 4(b). In the second test scenario the condition numbers are almost constant and slightly smaller
than 7.5.
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Figure 3: Contour plots illustrating the dependence of the condition number κASM = κ(CAA) on
β1 > 0 and ρ1 ≥ 0.

8.3 Stage SE-CG → DFE-CG

Now we analyze the performance of the preconditioner in the second stage.

8.3.1 Solution of the smoothing problem

Every application of the auxiliary space preconditioner in the second stage requires solving two linear
systems of equations: the auxiliary problem involving the matrix Ã and the problem involving the
matrix B, which we call the smoothing problem. Unfortunately, the corresponding matrix B = B2
in the second stage is in general no longer diagonal. The modifications on the strongly anisotropic
cells in T (0)

k (R), R ∈ R, cause a slightly stronger coupling than for a purely diagonal structure
although B2 remains diagonal in the bulk of the element. We therefore need an efficient solution
for the smoothing problem as well. We first consider the case where the domain consists of a single
patch since this already offers valuable insight into various effects.

Single patch: sparsity pattern and reordering Regarding the possible use of both (blockwise)
direct or iterative solvers, we first study the sparsity pattern of B2 obtained when the polynomial
Lagrange nodal basis is ordered in a line-wise fashion. In particular, since the Lagrange nodal basis
functions with reference nodes at the boundary of the patch need a special treatment anyway, we are
interested in the sparsity pattern of the submatrix for ansatz functions in the bulk of the patch. In
Fig. 5(a) this is depicted for a patch with polynomial degree p = 25 in both directions. We confine
the discussion in this paper to the bivariate case d = 2.
Since the cells of high anisotropy are selected on a per-subcell basis the inverse estimate is used

wherever possible. Therefore, B2 is still very sparse. The two bilinear forms b(1)
R,1,S`

and b
(1)
R,2,S`

,
see (7.5) and (7.7) for their definitions, contribute only to the main diagonal of the matrix. Since
a rectangular cell in two spatial dimensions can only be anisotropic in at most one direction for
Caspect > 1 the intersection of the regions where b(0)

R,1,S`
and b

(0)
R,2,S`

are applied does not contain
a subcell. At most this intersection might be comprised of isolated nodes. Because of the quasi-
uniformity of LGL-grids the regions T (0)

1 (R) and T (0)
2 (R) do not overlap if Caspect is large enough,

see e.g. [8, 9].
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Figure 4: Condition numbers κASM = κ(CAA) obtained in stage SE-DG→ SE-CG.
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Figure 5: Sparsity patterns for patch-inner nodal functions: (a)-(b) top left quarter of the matrix
B2 of p = 25 on a single patch. (c)-(d) Matrix B2 on two patches with polynomial degrees
6× 6 and 12× 12.

Moreover, due to the mass lumping approximation involved in the definition of the bilinear form
b, see (7.5) and (7.7), one can check that, given two tensorized Lagrange polynomials φξ and φξ̂
associated to LGL nodes in Gp(R), one has

bR(φξ, φξ̂) 6= 0 ⇒ ∃ k, S` ∈ T (0)
k such that ξk, ξ̂k ∈ F0(Ik,`k

) and ξk′ = ξ̂k′ for k′ 6= k. (8.1)

In other words, there are at most three diagonals populated with nonzero entries in each of the
matrices corresponding to b(0)

R,1 and b(0)
R,2, but the positions of the diagonals besides the main diagonal

differ in both matrices.
In order to bring the non-trivial diagonals as closely together as possible we use a special ordering

exploiting the fact that for Caspect large enough the sets of nodes contained in T (0)
1 (R) and T (0)

2 (R),
respectively, are disjoint and can each be reordered separately. More precisely, we deviate from the
default line-wise ordering in the first coordinate direction only for patch-inner nodes in T (0)

k (R),
k 6= 1, switching to a line-wise ordering in direction k, see Fig. 6 for the details. Note that this
reordering technique can still be applied for smaller Caspect when there are nodal basis functions
where the corresponding node is contained in T (0)

1 (R) ∩ T (0)
2 (R) as long as these basis functions do
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not produce an off-diagonal entry with other patch-inner basis functions in T (0)
1 (R) ∪ T (0)

2 (R), see
e.g. nodes 16 and 19 in Fig. 6(b).
The resulting linear system of equations has a block-diagonal matrix of tridiagonal submatrices,

see Fig. 5(b), and can be inverted in O(N) operations, where N is the size of B2.
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(a) Line-wise numbering.
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(b) Reordered numbering.

Figure 6: Schematic illustration of the numbering of the inner degrees of freedom in a single patch R
of polynomial degrees 13× 13 for Caspect = 1.6. Because of the symmetry, only the lower
half of the patch is shown. Black nodes: boundary degrees of freedom, gray nodes: inner
degrees of freedom corresponding to vertices of cells in T (0)

2 (R), white nodes: inner degrees
of freedom corresponding to vertices that are not vertices of cells in T (0)

2 (R).

Multiple patches: Gauß-Seidel relaxation on the skeleton When R consists of several
patches, the situation is more complicated. Note that although b is defined on V̂ , it is only evaluated
for piecewise polynomial functions from the space V . Due to the continuity of functions in V
across cell interfaces, the matrix B2 in general is no longer tridiagonal as shown by Figures 5(c)
and 5(d). There the sparsity pattern of the matrix B2 is depicted for the situation of two patches
of polynomial degrees 6 × 6 and 12 × 12 which meet at a common interface. The top left part
of the matrix corresponds to the degrees of freedom of the patch with lower polynomial degree,
while the degrees of freedom of the patch of higher polynomial degree are represented by the lower
right part. Since the trial functions are polynomials on each element R, the coupling is based on
polynomial interpolation causing the additional non-zero entries off the central bands. When the
polynomial degrees on both sides of an interface do not agree, every basis function on the element
with lower degree corresponding to a node on the interface has to be expanded as a linear combination
of higher degree Lagrange basis functions on that interface. The continuity requirement therefore
causes that a lower-degree Lagrange polynomial is coupled with a linear combination of face-inner
Lagrange polynomials on the higher-degree side. At a common element vertex, the coupling involves
all Lagrange polynomials with reference node located on an interface containing the element vertex.
In order to solve the linear system with B2, we alternate a Gauß-Seidel relaxation over the skeleton

of R and a block elimination for each R ∈ R in the spirit of substructuring methods. For the
patchwise block elimination process for the bulk degrees of freedom we invoke the method detailed
in the preceding paragraph.

8.3.2 Dependence on the polynomial degree

As in Sect. 8.2.3 for the first stage, we now analyze the performance of the preconditioner for the
second stage. The dependence of the condition numbers of the preconditioned linear systems on the
polynomial degrees is depicted in Fig. 7 for the two test cases. In all cases we choose α = 1.2, which is
a reasonable choice that balances two effects: on the one hand, the auxiliary space Ṽ = Vh,D∩H1

0 (Ω)
is rich enough for a good approximation of elements of V , on the other hand, the dimension of Ṽ
is not too high such that the linear systems of equations for the auxiliary problem is not infeasibly
large.
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Note that the nodes of an LGL-grid gradually move with growing polynomial degree. In contrast,
due to their more rigid structure, the associated dyadic grids evolve more abruptly with occasional
stagnation. This seems to cause some oscillations in constants related to the interplay between the
LGL- and the associated dyadic grids, see also [10].
Furthermore we have to fix the constant Caspect that limits the aspect ratios of subcells to which

an inverse estimate is applied in the formation of the auxiliary form b. In the recorded numerical
experiments we set Caspect = 2. For larger Caspect the condition numbers up to polynomial degree
p = 40 exhibit a more pronounced oscillatory behavior. Although they appear to lower again after
a burst of such oscillations a clear asymptotic bound cannot be observed in this range yet. As in
the first stage in Subsect. 8.2.2, the tuning constant cξ,ξ′ ∼ 1 is still a free parameter. Due to the
oscillations in the condition numbers, it is less clear how to find an optimal choice because we are
lacking a clear objective functional. In preliminary studies we found that cξ,ξ′ = 0.6 is a good choice
which partially compensates for the effect of the constant appearing in the inverse estimate.
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Figure 7: Condition numbers κASM = κ(CAA) obtained in stage SE-CG → DFE-CG.

Figures 7(a) and 7(b) show the condition numbers obtained in the second stage by the auxiliary
space method in the first and second test scenario, respectively. The marked points indicate the
condition numbers obtained by approximately solving the smoothing problem with the aid of 7
iterations of the substructuring method. In contrast, in both plots the continuous graphs represent
the results when the smoothing problem is solved exactly using a direct method.
For the first test scenario the condition numbers are presented for p ranging from 4 to 40. In the

cases (i) q = p, (ii) q = p + 2 and (iii) q = 3/2p the condition numbers vary only mildly, probably
due to the discrete process of dyadic grid generation. In contrast, we observe an increase of the
condition numbers when larger jumps between the polynomial degrees on adjacent elements are
considered according to the cases (iv) q = 7/4p and, in particular, to (v) q = 2p. A more thorough
analysis reveals that this phenomenon is caused by the slow convergence to the asymptotic limit
of the constant in the estimate analogous to (7.16) for m = 1, where the roles of the LGL- and
dyadic grids are interchanged. This estimate enters the proof of the properties of the operator Q̃ in
Proposition 7.8 and affects the dependence of the constants in the ASM conditions (3.4) and (3.6) on
the polynomial degree. This in turn causes some growth of the condition numbers for the moderate
polynomial degrees under investigation. For a detailed discussion of these approximation estimates
and the convergence behavior of their constants we refer to [10].
One observes enhanced oscillations when specific polynomial degrees are present in the grid, e.g.

for odd polynomial degrees close to 27 which we attribute to a resonance effect between the LGL- and
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dyadic grids. More detailed investigations reveal that similar oscillations are also observed for some
even polynomial degrees, e.g. 50. Moreover, the resonance can be shifted to nearby polynomial
degrees when the parameter α, controlling the associated dyadic grids, is varied. Therefore, our
tests should be viewed as a guide for favorable choices of the dyadic grid generation parameters α
depending on the employed polynomial degrees.
For the second test scenario, which is perhaps more relevant for practical applications than the

first one, we investigate p in the range of 4 to 60. When the smoothing problem is solved exactly, we
observe that, aside from some oscillations due to the grid resonance effect, the condition numbers
grow in essence mildly for small polynomial degrees and quickly tend to a limit below 10. When
solving the smoothing problem only approximately by a fixed number of substructuring iterations,
we observe increasing condition numbers for polynomial degrees larger than 41. This issue will be
examined more closely in forthcoming work.
For instance, using b(·, ·)-orthonormal polynomials on each patch R further sparsifies B2 signifi-

cantly. Depending on the range of p, the cost of changing bases may well be offset by the positive
effect on the substructuring iteration. Detailed studies of this and related issues are deferred to
forthcoming work.
Of course, from a practical point of view polynomial degrees exceeding 40 significantly are rarely

encountered except in pure spectral approximations on a single element when the solution is very
regular, and in this case the auxiliary problem can be solved efficiently with the method presented
above.

8.4 Combined stages SE-DG → SE-CG and SE-CG → DFE-CG
After studying the effects of the two stages and their numerical effects in detail, we now combine the
stages SE-DG → SE-CG and SE-CG → DFE-CG by using the second stage as a preconditioner
CÃ of the auxiliary problem of the first stage. The numerical results for both test scenarios showing
the condition numbers obtained when the combined preconditioner is applied are depicted in Fig. 8.
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Figure 8: Condition numbers κASM = κ(CAA) obtained in combined stages SE-DG → SE-CG
and SE-CG → DFE-CG.

For both scenarios, the numerical effects observed for the single stages are also present when the
combined preconditioner is used. The oscillations that have been striking in the second stage for
the first scenario now only have a mild effect, but their dependence on the ratio q/p is still clearly
visible. In the second scenario, for p ≤ 40 the condition numbers for the approximate and exact
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solutions of the smoothing problem almost agree. For larger p the insufficiently accurate solutions
of the smoothing problem by the substructuring method in the second stage lead to a deterioration
of the overall condition number. When the smoothing problem in the second stage is solved exactly,
the condition number is bounded by 17.
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