948 research outputs found
The Radio Afterglow and Host Galaxy of the Dark GRB 020819
Of the fourteen gamma-ray bursts (GRBs) localized to better than 2' radius
with the SXC on HETE-2, only two lack optical afterglow detections, and the
high recovery rate among this sample has been used to argue that the fraction
of truly dark bursts is ~10%. While a large fraction of earlier dark bursts can
be explained by the failure of ground-based searches to reach appropriate
limiting magnitudes, suppression of the optical light of these SXC dark bursts
seems likely. Here we report the discovery and observation of the radio
afterglow of GRB 020819, an SXC dark burst, which enables us to identify the
likely host galaxy (probability of 99.2%) and hence the redshift (z=0.41) of
the GRB. The radio light curve is qualitatively similar to that of several
other radio afterglows, and may include an early-time contribution from the
emission of the reverse shock. The proposed host is a bright R = 19.5 mag
barred spiral galaxy, with a faint R ~ 24.0 mag "blob'' of emission, 3" from
the galaxy core (16 kpc in projection), that is coincident with the radio
afterglow. Optical photometry of the galaxy and blob, beginning 3 hours after
the burst and extending over more than 100 days, establishes strong upper
limits to the optical brightness of any afterglow or associated supernova.
Combining the afterglow radio fluxes and our earliest R-band limit, we find
that the most likely afterglow model invokes a spherical expansion into a
constant-density (rather than stellar wind-like) external environment; within
the context of this model, a modest local extinction of A_V ~ 1 mag is
sufficient to suppress the optical flux below our limits.Comment: 7 pages, 2 figures. ApJ, in press. For more info on dark bursts, see
http://www.astro.ku.dk/~pallja/dark.htm
Chandra Measurements of a Complete Sample of X-ray Luminous Galaxy Clusters: The Luminosity-Mass Relation
We present the results of work involving a statistically complete sample of
34 galaxy clusters, in the redshift range 0.15z0.3 observed with
. We investigate the luminosity-mass () relation for the cluster
sample, with the masses obtained via a full hydrostatic mass analysis. We
utilise a method to fully account for selection biases when modeling the
relation, and find that the relation is significantly different than the
relation modelled when not account for selection effects. We find that the
luminosity of our clusters is 2.20.4 times higher (when accounting for
selection effects) than the average for a given mass, its mass is 30% lower
than the population average for a given luminosity. Equivalently, using the
relation measured from this sample without correcting for selection biases
would lead to the underestimation by 40% of the average mass of a cluster with
a given luminosity. Comparing the hydrostatic masses to mass estimates
determined from the parameter, we find that they are entirely
consistent, irrespective of the dynamical state of the cluster.Comment: 31 pages, 43 figures, accepted for publication in MNRA
Weak Lensing Mass Reconstruction of the Galaxy Cluster Abell 209
Weak lensing applied to deep optical images of clusters of galaxies provides
a powerful tool to reconstruct the distribution of the gravitating mass
associated to these structures. We use the shear signal extracted by an
analysis of deep exposures of a region centered around the galaxy cluster Abell
209, at redshift z=0.2, to derive both a map of the projected mass distribution
and an estimate of the total mass within a characteristic radius. We use a
series of deep archival R-band images from CFHT-12k, covering an area of 0.3
deg^2. We determine the shear of background galaxy images using a new
implementation of the modified Kaiser-Squires-Broadhurst pipeline for shear
determination, which we has been tested against the ``Shear TEsting Program 1
and 2'' simulations. We use mass aperture statistics to produce maps of the 2
dimensional density distribution, and parametric fits using both
Navarro-Frenk-White (NFW) and singular-isothermal-sphere profiles to constrain
the total mass. The projected mass distribution shows a pronounced asymmetry,
with an elongated structure extending from the SE to the NW. This is in general
agreement with the optical distribution previously found by other authors. A
similar elongation was previously detected in the X-ray emission map, and in
the distribution of galaxy colours. The circular NFW mass profile fit gives a
total mass of M_{200} = 7.7^{+4.3}_{-2.7} 10^{14} solar masses inside the
virial radius r_{200} = 1.8\pm 0.3 Mpc. The weak lensing profile reinforces the
evidence for an elongated structure of Abell 209, as previously suggested by
studies of the galaxy distribution and velocities.Comment: accepted by A&A, 15 pages, 11 figure
A weak lensing analysis of the PLCK G100.2-30.4 cluster
We present a mass estimate of the Planck-discovered cluster PLCK G100.2-30.4,
derived from a weak lensing analysis of deep SUBARU griz images. We perform a
careful selection of the background galaxies using the multi-band imaging data,
and undertake the weak lensing analysis on the deep (1hr) r-band image. The
shape measurement is based on the KSB algorithm; we adopt the PSFex software to
model the Point Spread Function (PSF) across the field and correct for this in
the shape measurement. The weak lensing analysis is validated through extensive
image simulations. We compare the resulting weak lensing mass profile and total
mass estimate to those obtained from our re-analysis of XMM-Newton
observations, derived under the hypothesis of hydrostatic equilibrium. The
total integrated mass profiles are in remarkably good agreement, agreeing
within 1 across their common radial range. A mass is derived for the cluster from our weak lensing
analysis. Comparing this value to that obtained from our reanalysis of
XMM-Newton data, we obtain a bias factor of (1-b) = 0.8 0.1. This is
compatible within 1 with the value of (1-b) obtained by Planck
Collaboration XXIV from their calibration of the bias factor using
newly-available weak lensing reconstructed masses.Comment: 11 pages, 12 figures, accepted for publication on Astronomy &
Astrophysics; updates in affiliation
Chandra and XMM-Newton observations of the merging cluster of galaxies PLCK G036.7+14.9
We present Chandra and XMM-Newton observations of PLCK G036.7+14.9 from the
Chandra-Planck Legacy Program. The high resolution X-ray observations reveal
two close subclusters, G036N and G036S, which were not resolved by previous
ROSAT, optical, or recent Planck observations. We perform detailed imaging and
spectral analyses and use a simplified model to study the kinematics of this
system. The basic picture is that PLCK G036.7+14.9 is undergoing a major merger
(mass ratio close to unity) between the two massive subclusters, with the
merger largely along the line-of-sight and probably at an early stage. G036N
hosts a small, moderate cool-core, while G036S has at most a very weak
cool-core in the central 40 kpc region. The difference in core cooling times is
unlikely to be caused by the ongoing merger disrupting a pre-existing cool-core
in G036S. G036N also hosts an unresolved radio source in the center, which may
be heating the gas if the radio source is extended. The Planck derived mass is
higher than the X-ray measured mass of either subcluster, but is lower than the
X-ray measured mass of the whole cluster, due to the fact that Planck does not
resolve PLCK G036.7+14.9 into subclusters and interprets it as a single
cluster. This mass discrepancy could induce significant bias to the mass
function if such previously unresolved systems are common in the Planck cluster
sample. High resolution X-ray observations are necessary to identify the
fraction of such systems and correct such a bias for the purpose of precision
cosmological studies.Comment: 23 pages, 8 figures (low resolution) with additional 12 figures in
the Appendix, accepted for publication in Ap
A Thirty Kiloparsec Chain of "Beads on a String" Star Formation Between Two Merging Early Type Galaxies in the Core of a Strong-Lensing Galaxy Cluster
New Hubble Space Telescope ultraviolet and optical imaging of the
strong-lensing galaxy cluster SDSS J1531+3414 (z=0.335) reveals two centrally
dominant elliptical galaxies participating in an ongoing major merger. The
interaction is at least somewhat rich in cool gas, as the merger is associated
with a complex network of nineteen massive superclusters of young stars (or
small tidal dwarf galaxies) separated by ~1 kpc in projection from one another,
combining to an estimated total star formation rate of ~5 solar masses per
year. The resolved young stellar superclusters are threaded by narrow H-alpha,
[O II], and blue excess filaments arranged in a network spanning ~27 kpc across
the two merging galaxies. This morphology is strongly reminiscent of the
well-known "beads on a string" mode of star formation observed on kpc-scales in
the arms of spiral galaxies, resonance rings, and in tidal tails between
interacting galaxies. Nevertheless, the arrangement of this star formation
relative to the nuclei of the two galaxies is difficult to interpret in a
dynamical sense, as no known "beads on a string" systems associated with
kpc-scale tidal interactions exhibit such lopsided morphology relative to the
merger participants. In this Letter we present the images and follow-up
spectroscopy, and discuss possible physical interpretations for the unique
arrangement of the young stellar clusters. While we suggest that this
morphology is likely to be dynamically short-lived, a more quantitative
understanding awaits necessary multiwavelength follow-up, including optical
integral field spectroscopy, ALMA sub-mm interferometry, and Chandra X-ray
imaging.Comment: 7 pages, 4 figures, accepted for publication in ApJ Letters. High
resolution images of the cluster can be found at
http://hubblesite.org/news/2014/2
The dark clump near Abell 1942: dark matter halo or statistical fluke?
Weak lensing surveys provide the possibility of identifying dark matter halos
based on their total matter content rather than just the luminous matter
content. On the basis of two sets of observations carried out with the CFHT,
Erben et al. (2000) presented the first candidate dark clump, i.e. a dark
matter concentration identified by its significant weak lensing signal without
a corresponding galaxy overdensity or X-ray emission.
We present a set of HST mosaic observations which confirms the presence of an
alignment signal at the dark clump position. The signal strength, however, is
weaker than in the ground-based data. It is therefore still unclear whether the
signal is caused by a lensing mass or is just a chance alignment. We also
present Chandra observations of the dark clump, which fail to reveal any
significant extended emission.
A comparison of the ellipticity measurements from the space-based HST data
and the ground-based CFHT data shows a remarkable agreement on average,
demonstrating that weak lensing studies from high-quality ground-based
observations yield reliable results.Comment: 33 pages, 34 figures, submitted to A&A. Version with full resolution
figures available at http://www.mpa-garching.mpg.de/~anja/aaclump.pd
When are Antiaromatic Molecules Paramagnetic?
Magnetizabilities and magnetically induced current densities have been calculated and analyzed for a series of antiaromatic cyclo[4k]carbons (k = 2-11), iso[n]phlorins (n = 4-8), expanded porphyrinoids, and meso-meso, beta-beta,beta-beta triple-linked porphyrin and isophlorin arrays. The cyclo[4k]carbons with k = 2-6 are predicted to be closed-shell paramagnetic molecules due to the very strong paratropic ring current combined with its large radius. Larger cyclo[4k]carbons with k = 6-11 are diamagnetic because they sustain a paratropic ring current whose strength is weaker than -20 nA T-1, which seems to be the lower threshold value for closed-shell paramagnetism. This holds not only for cyclo[4k]carbons but also for other organic molecules like expanded porphyrinoids and oligomers of porphyrinoids. The present study shows that meso-meso, beta-beta, beta-beta triple-linked linear porphyrin and isophlorin arrays have a domainlike distribution of alternating diatropic and paratropic ring currents. The strength of their local paratropic ring currents is weaker than -20 nA T-1 in each domain. Therefore, linear porphyrin and isophlorin arrays become more diamagnetic with increasing length of the ribbon. For the same reason, square-shaped meso-meso, beta-beta, beta-beta triple-linked free-base porphyrin and isophlorin tetramers as well as the Zn(II) complex of the porphyrin tetramer are diamagnetic. We show that closed-shell molecules with large positive magnetizabilities can be designed by following the principle that a strong paratropic current ring combined with a large ring-current radius leads to closed-shell paramagnetism.Peer reviewe
- …