7 research outputs found

    Cerebral Microbleeds and Structural White Matter Integrity in Patients With Traumatic Brain Injury-A Diffusion Tensor Imaging Study

    Get PDF
    Diffuse axonal injury (DAI) is a common neuropathological manifestation of traumatic brain injury (TBI), presenting as traumatic alterations in the cerebral white matter (WM) microstructure and often leading to long-term neurocognitive impairment. These WM alterations can be assessed using diffusion tensor imaging (DTI). Cerebral microbleeds (CMBs) are a common finding on head imaging in TBI and are often considered a visible sign of DAI, although they represent diffuse vascular injury. It is poorly known how they associate with long-term white matter integrity. This study included 20 patients with TBI and CMBs, 34 patients with TBI without CMBs, and 11 controls with orthopedic injuries. DTI was used to assess microstructural WM alterations. CMBs were detected using susceptibility-weighted imaging (SWI) and graded according to their location in the WM and total lesion load was counted. Patients underwent SWI within 2 months after injury. DTI and clinical outcome assessment were performed at an average of eight months after injury. Outcome was assessed using the extended Glasgow Outcome Scale (GOSe). The Glasgow Coma Scale (GCS) and length of post-traumatic amnesia (PTA) were used to assess clinical severity of the injury. We found that CMB grading and total lesion load were negatively associated with fractional anisotropy (FA) and positively associated with mean diffusivity (MD). Patients with TBI and CMBs had decreased FA and increased MD compared with patients with TBI without CMBs. CMBs were also associated with worse clinical outcome. When adjusting for the clinical severity of the injury, none of the mentioned associations were found. Thus, the difference in FA and MD is explained by patients with TBI and CMBs having more severe injuries. Our results suggest that CMBs are not associated with greater WM alterations when adjusting for the clinical severity of TBI. Thus, CMBs and WM alterations may not be strongly associated pathologies in TBI

    Nasopharyngeal Bacterial Colonization and Gene Polymorphisms of Mannose-Binding Lectin and Toll-Like Receptors 2 and 4 in Infants

    Get PDF
    BACKGROUND: Human nasopharynx is often colonized by potentially pathogenic bacteria. Gene polymorphisms in mannose-binding lectin (MBL), toll-like receptor (TLR) 2 and TLR4 have been reported. The present study aimed to investigate possible association between nasopharyngeal bacterial colonization and gene polymorphisms of MBL, TLR2 and TLR4 in healthy infants. METHODOLOGY/PRINCIPAL FINDINGS: From August 2008 to June 2010, 489 nasopharyngeal swabs and 412 blood samples were taken from 3-month-old healthy Finnish infants. Semi-quantitative culture was performed and pyrosequencing was used for detection of polymorphisms in MBL structural gene at codons 52, 54, and 57, TLR2 Arg753Gln and TLR4 Asp299Gly. Fifty-nine percent of subjects were culture positive for at least one of the four species: 11% for Streptococcus pneumoniae, 23% for Moraxella catarrhalis, 1% for Haemophilus influenzae and 25% for Staphylococcus aureus. Thirty-two percent of subjects had variant types in MBL, 5% had polymorphism of TLR2, and 18% had polymorphism of TLR4. Colonization rates of S. pneumoniae and S. aureus were significantly higher in infants with variant types of MBL than those with wild type (p = .011 and p = .024). Colonization rates of S. aureus and M. catarrhalis were significantly higher in infants with polymorphisms of TLR2 and of TLR4 than those without (p = .027 and p = .002). CONCLUSIONS: Our study suggests that there is an association between nasopharyngeal bacterial colonization and genetic variation of MBL, TLR2 and TLR4 in young infants. This finding supports a role for these genetic variations in susceptibility of children to respiratory infections

    Cerebral microbleeds and structural white matter integrity in patients with traumatic brain injury : a diffusion tensor imaging study

    No full text
    Diffuse axonal injury (DAI) is a common neuropathological manifestation of traumatic brain injury (TBI), presenting as alterations in the cerebral white matter (WM) microstructure and often leading to long-term neurocognitive impairment. Cerebral microbleeds (CMBs) are a common finding on head imaging in TBI and are often considered a visible sign of DAI, although they represent diffuse vascular injury. It is poorly known how they associate with long-term white matter integrity. This study included 20 patients with TBI and CMBs, 34 patients with TBI without CMBs, and 11 controls with orthopedic injuries. CMBs were detected using susceptibility-weighted imaging (SWI), graded according to their location in the WM and total lesion load was counted. Patients underwent SWI within two months after injury. Diffusion tensor imaging (DTI) was used to assess microstructural WM alterations at an average of eight months after injury. We found that CMB grading and total lesion load were negatively associated with fractional anisotropy (FA) and positively associated with mean diffusivity (MD). Patients with TBI and CMBs had decreased FA and increased MD compared with patients with TBI without CMBs. When adjusting for the clinical severity of the injury, none of these associations were found. Thus, the difference in FA and MD is explained by patients with TBI and CMBs having more severe injuries. Our results suggest that CMBs are not associated with greater WM alterations when adjusting for the clinical severity of TBI. Thus, CMBs and WM alterations appear to represent independent aspects of TBI

    Cerebral Microbleeds and Structural White Matter Integrity in Patients With Traumatic Brain Injury-A Diffusion Tensor Imaging Study.

    No full text
    Diffuse axonal injury (DAI) is a common neuropathological manifestation of traumatic brain injury (TBI), presenting as traumatic alterations in the cerebral white matter (WM) microstructure and often leading to long-term neurocognitive impairment. These WM alterations can be assessed using diffusion tensor imaging (DTI). Cerebral microbleeds (CMBs) are a common finding on head imaging in TBI and are often considered a visible sign of DAI, although they represent diffuse vascular injury. It is poorly known how they associate with long-term white matter integrity. This study included 20 patients with TBI and CMBs, 34 patients with TBI without CMBs, and 11 controls with orthopedic injuries. DTI was used to assess microstructural WM alterations. CMBs were detected using susceptibility-weighted imaging (SWI) and graded according to their location in the WM and total lesion load was counted. Patients underwent SWI within 2 months after injury. DTI and clinical outcome assessment were performed at an average of eight months after injury. Outcome was assessed using the extended Glasgow Outcome Scale (GOSe). The Glasgow Coma Scale (GCS) and length of post-traumatic amnesia (PTA) were used to assess clinical severity of the injury. We found that CMB grading and total lesion load were negatively associated with fractional anisotropy (FA) and positively associated with mean diffusivity (MD). Patients with TBI and CMBs had decreased FA and increased MD compared with patients with TBI without CMBs. CMBs were also associated with worse clinical outcome. When adjusting for the clinical severity of the injury, none of the mentioned associations were found. Thus, the difference in FA and MD is explained by patients with TBI and CMBs having more severe injuries. Our results suggest that CMBs are not associated with greater WM alterations when adjusting for the clinical severity of TBI. Thus, CMBs and WM alterations may not be strongly associated pathologies in TBI
    corecore