1,608 research outputs found

    Dipole and Bloch oscillations of cold atoms in a parabolic lattice

    Full text link
    The paper studies the dynamics of a Bose-Einstein condensate loaded into a 1D parabolic optical lattice, and excited by a sudden shift of the lattice center. Depending on the magnitude of the initial shift, the condensate undergoes either dipole or Bloch oscillations. The effects of dephasing and of atom-atom interactions on these oscillations are discussed.Comment: 3 pages, to appear in proceeding of LPHYS'05 conference (July 4-8, 2005, Kyoto, Japan

    Microstructured blood vessel surrogates reveal structural tropism of motile malaria parasites

    Get PDF
    Plasmodium sporozoites, the highly motile forms of the malaria parasite, are transmitted naturally by mosquitoes and traverse the skin to find, associate with, and enter blood capillaries. Research aimed at understanding how sporozoites select blood vessels is hampered by the lack of a suitable experimental system. Arrays of uniform cylindrical pillars can be used to study small cells moving in controlled environments. Here, an array system displaying a variety of pillars with different diameters and shapes is developed in order to investigate how Plasmodium sporozoites associate to the pillars as blood vessel surrogates. Investigating the association of sporozoites to pillars in arrays displaying pillars of different diameters reveals that the crescent-shaped parasites prefer to associate with and migrate around pillars with a similar curvature. This suggests that after transmission by a mosquito, malaria parasites may use a structural tropism to recognize blood capillaries in the dermis in order to gain access to the blood stream

    An optical lattice on an atom chip

    Full text link
    Optical dipole traps and atom chips are two very powerful tools for the quantum manipulation of neutral atoms. We demonstrate that both methods can be combined by creating an optical lattice potential on an atom chip. A red-detuned laser beam is retro-reflected using the atom chip surface as a high-quality mirror, generating a vertical array of purely optical oblate traps. We load thermal atoms from the chip into the lattice and observe cooling into the two-dimensional regime where the thermal energy is smaller than a quantum of transverse excitation. Using a chip-generated Bose-Einstein condensate, we demonstrate coherent Bloch oscillations in the lattice.Comment: 3 pages, 2 figure

    Loop structure of the lowest Bloch band for a Bose-Einstein condensate

    Full text link
    We investigate analytically and numerically Bloch waves for a Bose--Einstein condensate in a sinusoidal external potential. At low densities the dependence of the energy on the quasimomentum is similar to that for a single particle, but at densities greater than a critical one the lowest band becomes triple-valued near the boundary of the first Brillouin zone and develops the structure characteristic of the swallow-tail catastrophe. We comment on the experimental consequences of this behavior.Comment: 4 pages, 7 figure

    Mapping adaptation of barley to droughted environments

    Get PDF
    Identifying barley genomic regions influencing the response of yield and its components to water deficits will aid in our understanding of the genetics of drought tolerance and the development of more drought tolerant cultivars. We assembled a population of 192 genotypes that represented landraces, old, and contemporary cultivars sampling key regions around the Mediterranean basin and the rest of Europe. The population was genotyped with a stratified set of 50 genomic and EST derived molecular markers, 49 of which were Simple Sequence Repeats (SSRs), which revealed an underlying population sub-structure that corresponded closely to the geographic regions in which the genotypes were grown. A more dense whole genome scan was generated by using Diversity Array Technology (DArT®) to generate 1130 biallelic markers for the population. The population was grown at two contrasting sites in each of seven Mediterranean countries for harvest 2004 and 2005 and grain yield data collected. Mean yield levels ranged from 0.3 to 6.2 t/ha, with highly significant genetic variation in low-yielding environments. Associations of yield with barley genomic regions were then detected by combining the DArT marker data with the yield data in mixed model analyses for the individual trials, followed by multiple regression of yield on markers to identify a multi-locus subset of significant markers/QTLs. QTLs exhibiting a pre-defined consistency across environments were detected in bins 4, 6, 6 and 7 on barley chromosomes 3H, 4H, 5H and 7H respectivel

    Conduction of Ultracold Fermions Through a Mesoscopic Channel

    Full text link
    In a mesoscopic conductor electric resistance is detected even if the device is defect-free. We engineer and study a cold-atom analog of a mesoscopic conductor. It consists of a narrow channel connecting two macroscopic reservoirs of fermions that can be switched from ballistic to diffusive. We induce a current through the channel and find ohmic conduction, even for a ballistic channel. An analysis of in-situ density distributions shows that in the ballistic case the chemical potential drop occurs at the entrance and exit of the channel, revealing the presence of contact resistance. In contrast, a diffusive channel with disorder displays a chemical potential drop spread over the whole channel. Our approach opens the way towards quantum simulation of mesoscopic devices with quantum gases

    Forecasting in the light of Big Data

    Get PDF
    Predicting the future state of a system has always been a natural motivation for science and practical applications. Such a topic, beyond its obvious technical and societal relevance, is also interesting from a conceptual point of view. This owes to the fact that forecasting lends itself to two equally radical, yet opposite methodologies. A reductionist one, based on the first principles, and the naive inductivist one, based only on data. This latter view has recently gained some attention in response to the availability of unprecedented amounts of data and increasingly sophisticated algorithmic analytic techniques. The purpose of this note is to assess critically the role of big data in reshaping the key aspects of forecasting and in particular the claim that bigger data leads to better predictions. Drawing on the representative example of weather forecasts we argue that this is not generally the case. We conclude by suggesting that a clever and context-dependent compromise between modelling and quantitative analysis stands out as the best forecasting strategy, as anticipated nearly a century ago by Richardson and von Neumann

    Second harmonic generating (SHG) nanoprobes for in vivo imaging

    Get PDF
    Fluorescence microscopy has profoundly changed cell and molecular biology studies by permitting tagged gene products to be followed as they function and interact. The ability of a fluorescent dye to absorb and emit light of different wavelengths allows it to generate startling contrast that, in the best cases, can permit single molecule detection and tracking. However, in many experimental settings, fluorescent probes fall short of their potential due to dye bleaching, dye signal saturation, and tissue autofluorescence. Here, we demonstrate that second harmonic generating (SHG) nanoprobes can be used for in vivo imaging, circumventing many of the limitations of classical fluorescence probes. Under intense illumination, such as at the focus of a laser-scanning microscope, these SHG nanocrystals convert two photons into one photon of half the wavelength; thus, when imaged by conventional two-photon microscopy, SHG nanoprobes appear to generate a signal with an inverse Stokes shift like a fluorescent dye, but with a narrower emission. Unlike commonly used fluorescent probes, SHG nanoprobes neither bleach nor blink, and the signal they generate does not saturate with increasing illumination intensity. The resulting contrast and detectability of SHG nanoprobes provide unique advantages for molecular imaging of living cells and tissues

    Scaling property of the critical hopping parameters for the Bose-Hubbard model

    Full text link
    Recently precise results for the boundary between the Mott insulator phase and the superfluid phase of the homogeneous Bose-Hubbard model have become available for arbitrary integer filling factor g and any lattice dimension d > 1. We use these data for demonstrating that the critical hopping parameters obey a scaling relationship which allows one to map results for different g onto each other. Unexpectedly, the mean-field result captures the dependence of the exact critical parameters on the filling factor almost fully. We also present an approximation formula which describes the critical parameters for d > 1 and any g with high accuracy.Comment: 5 pages, 5 figures. to appear in EPJ
    • …
    corecore