44 research outputs found

    Inequalities in the use of secondary prevention of cardiovascular disease by socioeconomic status: evidence from the PURE observational study

    Get PDF
    Background: There is little evidence on the use of secondary prevention medicines for cardiovascular disease by socioeconomic groups in countries at different levels of economic development. Methods: We assessed use of antiplatelet, cholesterol, and blood-pressure-lowering drugs in 8492 individuals with self-reported cardiovascular disease from 21 countries enrolled in the Prospective Urban Rural Epidemiology (PURE) study. Defining one or more drugs as a minimal level of secondary prevention, wealth-related inequality was measured using the Wagstaff concentration index, scaled from −1 (pro-poor) to 1 (pro-rich), standardised by age and sex. Correlations between inequalities and national health-related indicators were estimated. Findings: The proportion of patients with cardiovascular disease on three medications ranged from 0% in South Africa (95% CI 0–1·7), Tanzania (0–3·6), and Zimbabwe (0–5·1), to 49·3% in Canada (44·4–54·3). Proportions receiving at least one drug varied from 2·0% (95% CI 0·5–6·9) in Tanzania to 91·4% (86·6–94·6) in Sweden. There was significant (p<0·05) pro-rich inequality in Saudi Arabia, China, Colombia, India, Pakistan, and Zimbabwe. Pro-poor distributions were observed in Sweden, Brazil, Chile, Poland, and the occupied Palestinian territory. The strongest predictors of inequality were public expenditure on health and overall use of secondary prevention medicines. Interpretation: Use of medication for secondary prevention of cardiovascular disease is alarmingly low. In many countries with the lowest use, pro-rich inequality is greatest. Policies associated with an equal or pro-poor distribution include free medications and community health programmes to support adherence to medications. Funding: Full funding sources listed at the end of the paper (see Acknowledgments)

    Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis

    Get PDF
    The added value of incorporating information from repeated blood pressure and cholesterol measurements to predict cardiovascular disease (CVD) risk has not been rigorously assessed. We used data on 191,445 adults from the Emerging Risk Factors Collaboration (38 cohorts from 17 countries with data encompassing 1962-2014) with more than 1 million measurements of systolic blood pressure, total cholesterol, and high-density lipoprotein cholesterol. Over a median 12 years of follow-up, 21,170 CVD events occurred. Risk prediction models using cumulative mean values of repeated measurements and summary measures from longitudinal modeling of the repeated measurements were compared with models using measurements from a single time point. Risk discrimination (Cindex) and net reclassification were calculated, and changes in C-indices were meta-analyzed across studies. Compared with the single-time-point model, the cumulative means and longitudinal models increased the C-index by 0.0040 (95% confidence interval (CI): 0.0023, 0.0057) and 0.0023 (95% CI: 0.0005, 0.0042), respectively. Reclassification was also improved in both models; compared with the single-time-point model, overall net reclassification improvements were 0.0369 (95% CI: 0.0303, 0.0436) for the cumulative-means model and 0.0177 (95% CI: 0.0110, 0.0243) for the longitudinal model. In conclusion, incorporating repeated measurements of blood pressure and cholesterol into CVD risk prediction models slightly improves risk prediction

    World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions.

    Get PDF
    BACKGROUND: To help adapt cardiovascular disease risk prediction approaches to low-income and middle-income countries, WHO has convened an effort to develop, evaluate, and illustrate revised risk models. Here, we report the derivation, validation, and illustration of the revised WHO cardiovascular disease risk prediction charts that have been adapted to the circumstances of 21 global regions. METHODS: In this model revision initiative, we derived 10-year risk prediction models for fatal and non-fatal cardiovascular disease (ie, myocardial infarction and stroke) using individual participant data from the Emerging Risk Factors Collaboration. Models included information on age, smoking status, systolic blood pressure, history of diabetes, and total cholesterol. For derivation, we included participants aged 40-80 years without a known baseline history of cardiovascular disease, who were followed up until the first myocardial infarction, fatal coronary heart disease, or stroke event. We recalibrated models using age-specific and sex-specific incidences and risk factor values available from 21 global regions. For external validation, we analysed individual participant data from studies distinct from those used in model derivation. We illustrated models by analysing data on a further 123 743 individuals from surveys in 79 countries collected with the WHO STEPwise Approach to Surveillance. FINDINGS: Our risk model derivation involved 376 177 individuals from 85 cohorts, and 19 333 incident cardiovascular events recorded during 10 years of follow-up. The derived risk prediction models discriminated well in external validation cohorts (19 cohorts, 1 096 061 individuals, 25 950 cardiovascular disease events), with Harrell's C indices ranging from 0·685 (95% CI 0·629-0·741) to 0·833 (0·783-0·882). For a given risk factor profile, we found substantial variation across global regions in the estimated 10-year predicted risk. For example, estimated cardiovascular disease risk for a 60-year-old male smoker without diabetes and with systolic blood pressure of 140 mm Hg and total cholesterol of 5 mmol/L ranged from 11% in Andean Latin America to 30% in central Asia. When applied to data from 79 countries (mostly low-income and middle-income countries), the proportion of individuals aged 40-64 years estimated to be at greater than 20% risk ranged from less than 1% in Uganda to more than 16% in Egypt. INTERPRETATION: We have derived, calibrated, and validated new WHO risk prediction models to estimate cardiovascular disease risk in 21 Global Burden of Disease regions. The widespread use of these models could enhance the accuracy, practicability, and sustainability of efforts to reduce the burden of cardiovascular disease worldwide. FUNDING: World Health Organization, British Heart Foundation (BHF), BHF Cambridge Centre for Research Excellence, UK Medical Research Council, and National Institute for Health Research

    Rivaroxaban with or without Aspirin in Stable Cardiovascular Disease

    Get PDF
    BACKGROUND We evaluated whether rivaroxaban alone or in combination with aspirin would be more effective than aspirin alone for secondary cardiovascular prevention. METHODS In this double-blind trial, we randomly assigned 27,395 participants with stable atherosclerotic vascular disease to receive rivaroxaban (2.5 mg twice daily) plus aspirin (100 mg once daily), rivaroxaban (5 mg twice daily), or aspirin (100 mg once daily). The primary outcome was a composite of cardiovascular death, stroke, or myocardial infarction. The study was stopped for superiority of the rivaroxaban-plus-aspirin group after a mean follow-up of 23 months. RESULTS The primary outcome occurred in fewer patients in the rivaroxaban-plus-aspirin group than in the aspirin-alone group (379 patients [4.1%] vs. 496 patients [5.4%]; hazard ratio, 0.76; 95% confidence interval [CI], 0.66 to 0.86; P<0.001; z=−4.126), but major bleeding events occurred in more patients in the rivaroxaban-plus-aspirin group (288 patients [3.1%] vs. 170 patients [1.9%]; hazard ratio, 1.70; 95% CI, 1.40 to 2.05; P<0.001). There was no significant difference in intracranial or fatal bleeding between these two groups. There were 313 deaths (3.4%) in the rivaroxaban-plus-aspirin group as compared with 378 (4.1%) in the aspirin-alone group (hazard ratio, 0.82; 95% CI, 0.71 to 0.96; P=0.01; threshold P value for significance, 0.0025). The primary outcome did not occur in significantly fewer patients in the rivaroxaban-alone group than in the aspirin-alone group, but major bleeding events occurred in more patients in the rivaroxaban-alone group. CONCLUSIONS Among patients with stable atherosclerotic vascular disease, those assigned to rivaroxaban (2.5 mg twice daily) plus aspirin had better cardiovascular outcomes and more major bleeding events than those assigned to aspirin alone. Rivaroxaban (5 mg twice daily) alone did not result in better cardiovascular outcomes than aspirin alone and resulted in more major bleeding events. (Funded by Bayer; COMPASS ClinicalTrials.gov number, NCT01776424.

    Rationale, design and baseline characteristics of a randomized controlled trial of a web-based computer-tailored physical activity intervention for adults from Quebec City

    No full text
    BACKGROUND: The relationship between physical activity and cardiovascular disease (CVD) protection is well documented. Numerous factors (e.g. patient motivation, lack of facilities, physician time constraints) can contribute to poor PA adherence. Web-based computer-tailored interventions offer an innovative way to provide tailored feedback and to empower adults to engage in regular moderate- to vigorous-intensity PA. To describe the rationale, design and content of a web-based computer-tailored PA intervention for Canadian adults enrolled in a randomized controlled trial (RCT). METHODS/DESIGN: 244 men and women aged between 35 and 70 years, without CVD or physical disability, not participating in regular moderate- to vigorous-intensity PA, and familiar with and having access to a computer at home, were recruited from the Quebec City Prospective Urban and Rural Epidemiological (PURE) study centre. Participants were randomized into two study arms: 1) an experimental group receiving the intervention and 2) a waiting list control group. The fully automated web-based computer-tailored PA intervention consists of seven 10- to 15-min sessions over an 8-week period. The theoretical underpinning of the intervention is based on the I-Change Model. The aim of the intervention was to reach a total of 150 min per week of moderate- to vigorous-intensity aerobic PA. DISCUSSION: This study will provide useful information before engaging in a large RCT to assess the long-term participation and maintenance of PA, the potential impact of regular PA on CVD risk factors and the cost-effectiveness of a web-based computer-tailored intervention. TRIAL REGISTRATION: ISRCTN36353353 registered on 24/07/201

    Dulaglutide is cardioprotective with or without background metformin in patients with diabetes and established or high risk for coronary vascular disease. A subgroup analysis of the REWIND Trial

    Full text link
    Abstract Background The 2019 ESC/EASD European Guidelines for Diabetes, Prediabetes and Coronary Artery Disease introduced a paradigm shift in the management of patients with type 2 diabetes (T2D) at high risk for or already established cardiovascular (CV) disease by recommending a GLP-1 receptor agonist (GLP-1 RA) as initial glucose lowering therapy in patients without any previous antihyperglycaemic treatment. This recommendation has been questioned since outcome trials of GLP-1-RA were usually conducted with metformin as background therapy. Purpose The aim of this report is to determine whether the effect of dulaglutide on cardiovascular events varies according to baseline metformin therapy. It was tested by a subgroup analysis of the Researching Cardiovascular Events with a Weekly Incretin in Diabetes (REWIND) trial. Methods REWIND, a multicentre, double-blind, placebo-controlled trial, comprised 9901 participants (women: 46.3%; mean age: 66.2 years) with T2D and either a previous CV event (31%) or a high CV risk (69%). They were randomised (1:1) to either sc. dulaglutide (1.5 mg/week) or placebo in addition to standard of care. The primary outcome was the first of a composite of non-fatal myocardial infarction or stroke or CV death. Secondary outcomes were a microvascular composite endpoint, all-cause death and heart failure. The effect of dulaglutide study outcomes in patients with and without baseline metformin was evaluated by means of a Cox regression hazard model with baseline metformin, dulaglutide assignment and the interaction between dulaglutide and metformin as independent variables. Adjusted hazard ratios (HR) and 95% confidence intervals (CI) were estimated using a Cox regression model with additional adjustments for factors that differed at baseline between people on vs. those not on baseline metformin selected by a backward regression model. A p&amp;lt;0.05 was considered significant (see Figure 1). Results Patients without metformin at baseline (n=1864; 19%) were older, leaner, more likely to be women and had a higher proportion of prior CV events, heart failure and renal disease than patients with metformin (n=8037; 81%). During a median follow-up of 5.4 years (IQR 5.1–5.9), the primary outcome occurred in 976 (12%) participants with baseline metformin and in 281 (15%) without metformin. There was no significant difference in the effect of dulaglutide on the primary outcome in the groups with vs. without metformin at baseline (HR 0.93 [CI 0.82–1.06] vs. 0.78 [CI 0.61–0.99]; p for interaction=0.16). The effect of dulaglutide on the secondary outcomes was also not modified by concomitant metformin use (all interaction p&amp;gt;0.1). Conclusion This exploratory analysis suggests that the cardioprotective effect of dulaglutide does not depend on baseline metformin therapy. This supports the recommendation of using agents with proven cardioprotective efficacy without metformin in patients with diabetes and additional cardiac risk factors. Figure 1. Forest plot Funding Acknowledgement Type of funding source: Private company. Main funding source(s): Eli Lilly and Company </jats:sec
    corecore