101 research outputs found

    Congenital Lymphoedema, Bronchiectasis And Seizure: Case Report

    Get PDF
    A l0-year-old girl with facial anomalies, mental retardation, peripheral lymphoedema, convulsions, cerebral cortical dysgenetic changes, bronchiectasis and chronic sinusitis is presented. She had features of both yellow nail syndrome and Hennekam syndrome. We think that our case might be a new congenital lymphoedema syndrome or an intermediate form between these syndromes. East African Medical Journal Vol. 85 (3) 2008: pp. 145-14

    Probing three-dimensional surfaces force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction

    Get PDF
    Cataloged from PDF version of article.Noncontact atomic force microscopy (NC-AFM) is being increasingly used to measure the interaction force between an atomically sharp probe tip and surfaces of interest, as a function of the three spatial dimensions, with picometer and piconewton accuracy. Since the results of such measurements may be affected by piezo nonlinearities, thermal and electronic drift, tip asymmetries, and elastic deformation of the tip apex, these effects need to be considered during image interpretation. In this paper, we analyze their impact on the acquired data, compare different methods to record atomic-resolution surface force fields, and determine the approaches that suffer the least from the associated artifacts. The related discussion underscores the idea that since force fields recorded by using NC-AFM always reflect the properties of both the sample and the probe tip, efforts to reduce unwanted effects of the tip on recorded data are indispensable for the extraction of detailed information about the atomic-scale properties of the surface

    Proposed experiment to produce and detect light pseudoscalars

    Get PDF
    We propose a laboratory experiment to produce and detect a light neutral pseudoscalar particle that couples to two photons. The pseudoscalar would be produced by a (real) photon from a laser beam interacting with a second (virtual) photon from a static magnetic field; it would be detected after it reconverts to a real photon in a duplicate magnetic field. The bounds on the coupling constant that could be obtained from a null result in such an experiment compete favorably with astrophysical limits and would substantially improve those from direct measurements

    Vitamin C attenuates methotrexate-induced oxidative stress in kidney and liver of rats

    Get PDF
    Like several other anticancer drugs, methotrexate (MTX) causes side effects, such as neuropathic pain, hepatotoxicity, and nephrotoxicity. Abnormal production of reactive oxygen species has been suspected in the pathophysiology of MTX-induced hepatorenal toxicity. Therefore, the aim of this study was to investigate the probable protective role of vitamin C (Vit C) on oxidative stress induced by MTX in the liver and kidney tissues of rats. A total of 32 rats were randomly and equally divided into four groups. The first group served as the control group. The second group received a single dose of 20 mg/kg of MTX intraperitoneally. To demonstrate our hypothesis, the third and the fourth groups received 250 mg/kg of Vit C for 3 days by oral gavage, with or without MTX treatment. At the end of the study, the liver and kidney tissues of the rats were collected and examined using histology. Both the tissues were assayed for malondialdehyde concentration and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities. In hepatic and renal tissues, lipid peroxidation levels were increased, whereas SOD, CAT, and GSH-Px levels were decreased by MTX. All parameters, including CAT levels in hepatic tissue, were significantly restored after the administration of Vit C for 3 days. Similar to the biochemical findings, evidence of oxidative damage was examined in both types of tissues by histopathological examination. From the results of this study, we were able to observe that Vit C administration modulates the antioxidant redox system and reduces the renal and hepatic oxidative stress induced by MTX. Vit C can ameliorate the toxic effect of MTX in liver and kidney tissues of rat

    Disposable sensors in diagnostics, food and environmental monitoring

    Get PDF
    Disposable sensors are low‐cost and easy‐to‐use sensing devices intended for short‐term or rapid single‐point measurements. The growing demand for fast, accessible, and reliable information in a vastly connected world makes disposable sensors increasingly important. The areas of application for such devices are numerous, ranging from pharmaceutical, agricultural, environmental, forensic, and food sciences to wearables and clinical diagnostics, especially in resource‐limited settings. The capabilities of disposable sensors can extend beyond measuring traditional physical quantities (for example, temperature or pressure); they can provide critical chemical and biological information (chemo‐ and biosensors) that can be digitized and made available to users and centralized/decentralized facilities for data storage, remotely. These features could pave the way for new classes of low‐cost systems for health, food, and environmental monitoring that can democratize sensing across the globe. Here, a brief insight into the materials and basics of sensors (methods of transduction, molecular recognition, and amplification) is provided followed by a comprehensive and critical overview of the disposable sensors currently used for medical diagnostics, food, and environmental analysis. Finally, views on how the field of disposable sensing devices will continue its evolution are discussed, including the future trends, challenges, and opportunities

    Single-molecule techniques in biophysics : a review of the progress in methods and applications

    Get PDF
    Single-molecule biophysics has transformed our understanding of the fundamental molecular processes involved in living biological systems, but also of the fascinating physics of life. Far more exotic than a collection of exemplars of soft matter behaviour, active biological matter lives far from thermal equilibrium, and typically covers multiple length scales from the nanometre level of single molecules up several orders of magnitude to longer length scales in emergent structures of cells, tissues and organisms. Biological molecules are often characterized by an underlying instability, in that multiple metastable free energy states exist which are separated by energy levels of typically just a few multiples of the thermal energy scale of kBT, where kB is the Boltzmann constant and T the absolute temperature, implying complex, dynamic inter-conversion kinetics across this bumpy free energy landscape in the relatively hot, wet environment of real, living biological matter. The key utility of single-molecule biophysics lies in its ability to probe the underlying heterogeneity of free energy states across a population of molecules, which in general is too challenging for conventional ensemble level approaches which measure mean average properties. Parallel developments in both experimental and theoretical techniques have been key to the latest insights and are enabling the development of highly-multiplexed, correlative techniques to tackle previously intractable biological problems. Experimentally, technological developments in the sensitivity and speed of biomolecular detectors, the stability and efficiency of light sources, probes and microfluidics, have enabled and driven the study of heterogeneous behaviours both in vitro and in vivo that were previously undetectable by ensemble methods..
    corecore